On duality in linear fractional programming


Autoria(s): Seshan, CR
Data(s)

1980

Resumo

In this paper, a dual of a given linear fractional program is defined and the weak, direct and converse duality theorems are proved. Both the primal and the dual are linear fractional programs. This duality theory leads to necessary and sufficient conditions for the optimality of a given feasible solution. A unmerical example is presented to illustrate the theory in this connection. The equivalence of Charnes and Cooper dual and Dinkelbach’s parametric dual of a linear fractional program is also established.

Formato

application/pdf

Identificador

http://eprints.iisc.ernet.in/34747/1/linear.pdf

Seshan, CR (1980) On duality in linear fractional programming. In: Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 89 (1). 35-42 .

Publicador

Indian Academy of Sciences

Relação

http://www.springerlink.com/content/g5813403x8086563/

http://eprints.iisc.ernet.in/34747/

Palavras-Chave #Mathematics
Tipo

Journal Article

PeerReviewed