424 resultados para iospin dependent Boltzmann-Langevin equation
Resumo:
In this work, we investigate the intrinsic limits of subthreshold slope in a dual gated bilayer graphene transistor using a coupled self-consistent Poisson-bandstructure solver. We benchmark the solver by matching the bias dependent band gap results obtained from the solver against published experimental data. We show that the intrinsic bias dependence of the electronic structure and the self-consistent electrostatics limit the subthreshold slope obtained in such a transistor well above the Boltzmann limit of 60 mV/decade at room temperature, but much below the results experimentally shown till date, indicating room for technological improvement of bilayer graphene.
Resumo:
An analysis is performed to study the unsteady combined forced and free convection flow (mixed convection flow) of a viscous incompressible electrically conducting fluid in the vicinity of an axisymmetric stagnation point adjacent to a heated vertical surface. The unsteadiness in the flow and temperature fields is due to the free stream velocity, which varies arbitrarily with time. Both constant wall temperature and constant heat flux conditions are considered in this analysis. By using suitable transformations, the Navier-Stokes and energy equations with four independent variables (x, y, z, t) are reduced to a system of partial differential equations with two independent variables (eta, tau). These transformations also uncouple the momentum and energy equations resulting in a primary axisymmetric flow, in an energy equation dependent on the primary flow and in a buoyancy-induced secondary flow dependent on both primary flow and energy. The resulting system of partial differential equations has been solved numerically by using both implicit finite-difference scheme and differential-difference method. An interesting result is that for a decelerating free stream velocity, flow reversal occurs in the primary flow after certain instant of time and the magnetic field delays or prevents the flow reversal. The surface heat transfer and the surface shear stress in the primary flow increase with the magnetic field, but the surface shear stress in the buoyancy-induced secondary flow decreases. Further the heat transfer increases with the Prandtl number, but the surface shear stress in the secondary flow decreases.
Resumo:
Benedict-Webb-Rubin equation of state constants for NO, O2, and the equilibrium mixture N2O4 ⇄ 2NO2 are reported.
Resumo:
We explore the application of pseudo time marching schemes, involving either deterministic integration or stochastic filtering, to solve the inverse problem of parameter identification of large dimensional structural systems from partial and noisy measurements of strictly static response. Solutions of such non-linear inverse problems could provide useful local stiffness variations and do not have to confront modeling uncertainties in damping, an important, yet inadequately understood, aspect in dynamic system identification problems. The usual method of least-square solution is through a regularized Gauss-Newton method (GNM) whose results are known to be sensitively dependent on the regularization parameter and data noise intensity. Finite time,recursive integration of the pseudo-dynamical GNM (PD-GNM) update equation addresses the major numerical difficulty associated with the near-zero singular values of the linearized operator and gives results that are not sensitive to the time step of integration. Therefore, we also propose a pseudo-dynamic stochastic filtering approach for the same problem using a parsimonious representation of states and specifically solve the linearized filtering equations through a pseudo-dynamic ensemble Kalman filter (PD-EnKF). For multiple sets of measurements involving various load cases, we expedite the speed of thePD-EnKF by proposing an inner iteration within every time step. Results using the pseudo-dynamic strategy obtained through PD-EnKF and recursive integration are compared with those from the conventional GNM, which prove that the PD-EnKF is the best performer showing little sensitivity to process noise covariance and yielding reconstructions with less artifacts even when the ensemble size is small.
Resumo:
Sesbania mosaic virus (SeMV),a single-strand positive-sense RNA plant virus, belongs to the genus Sobemoviruses. Mechanism of replication in Sobemoviruses is poorly understood. In the present study, SeMV RNA-dependent RNA polymerase (RdRp) was overexpressed and purified as a thioredoxin-tagged protein. The recombinant SeMV RdRp could synthesize RNA from genomic or subgenomic RNA templates, even in the absence ofthe protein primer, VPg. Analysis of the product indicated that it was double-stranded and that the mode of initiation was de novo. Mutational analysis of the 3' UTR of subgenomic RNA revealed that a stem-loop structure at the 3' end was important. Further, analysis of this stem-loop showed that the SeMV RdRp was capable of recognizing stem-loop structures of various lengths and forms. These results demonstrate that the SeMV RdRp is capable of primer-independent RNAsynthesis in vitro. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
We explore the application of pseudo time marching schemes, involving either deterministic integration or stochastic filtering, to solve the inverse problem of parameter identification of large dimensional structural systems from partial and noisy measurements of strictly static response. Solutions of such non-linear inverse problems could provide useful local stiffness variations and do not have to confront modeling uncertainties in damping, an important, yet inadequately understood, aspect in dynamic system identification problems. The usual method of least-square solution is through a regularized Gauss-Newton method (GNM) whose results are known to be sensitively dependent on the regularization parameter and data noise intensity. Finite time, recursive integration of the pseudo-dynamical GNM (PD-GNM) update equation addresses the major numerical difficulty associated with the near-zero singular values of the linearized operator and gives results that are not sensitive to the time step of integration. Therefore, we also propose a pseudo-dynamic stochastic filtering approach for the same problem using a parsimonious representation of states and specifically solve the linearized filtering equations through apseudo-dynamic ensemble Kalman filter (PD-EnKF). For multiple sets ofmeasurements involving various load cases, we expedite the speed of the PD-EnKF by proposing an inner iteration within every time step. Results using the pseudo-dynamic strategy obtained through PD-EnKF and recursive integration are compared with those from the conventional GNM, which prove that the PD-EnKF is the best performer showing little sensitivity to process noise covariance and yielding reconstructions with less artifacts even when the ensemble size is small. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
The association parameter in the diffuswn equaiior, dye fo Wiike one Chong has been interpreted in deferminable properties, thus permitting easily the calculation of the same for unknown systems. The proposed eqyotion a!se holds goods for water as soiute in organic solvenfs. The over-all percentage error remains the sarrse as that of the original equation.
Resumo:
In this paper, we have first given a numerical procedure for the solution of second order non-linear ordinary differential equations of the type y″ = f (x;y, y′) with given initial conditions. The method is based on geometrical interpretation of the equation, which suggests a simple geometrical construction of the integral curve. We then translate this geometrical method to the numerical procedure adaptable to desk calculators and digital computers. We have studied the efficacy of this method with the help of an illustrative example with known exact solution. We have also compared it with Runge-Kutta method. We have then applied this method to a physical problem, namely, the study of the temperature distribution in a semi-infinite solid homogeneous medium for temperature-dependent conductivity coefficient.
Resumo:
Extended self-similarity (ESS), a procedure that remarkably extends the range of scaling for structure functions in Navier-Stokes turbulence and thus allows improved determination of intermittency exponents, has never been fully explained. We show that ESS applies to Burgers turbulence at high Reynolds numbers and we give the theoretical explanation of the numerically observed improved scaling at both the IR and UV end, in total a gain of about three quarters of a decade: there is a reduction of subdominant contributions to scaling when going from the standard structure function representation to the ESS representation. We conjecture that a similar situation holds for three-dimensional incompressible turbulence and suggest ways of capturing subdominant contributions to scaling.
Resumo:
In this paper, an attempt is made to study the influence of external light waves on the thermoelectric power under strong magnetic field (TPSM) in ultrathin films (UFs), quantum wires (QWs) and quantum dots (QDs) of optoelectronic materials whose unperturbed dispersion relation of the conduction electrons are defined by three and two band models of Kane together with parabolic energy bands on the basis of newly formulated electron dispersion laws in each case. We have plotted the TPSM as functions of film thickness, electron concentration, light intensity and wavelength for UFs, QWs and ODs of InSb, GaAs, Hg1-xCdxTe and In1-xGaxAsyP1-y respectively. It appears from the figures that for UFs, the TPSM increases with increasing thickness in quantum steps, decreases with increasing electron degeneracy exhibiting entirely different types of oscillations and changes with both light intensity and wavelength and these two latter types of plots are the direct signature of light waves on opto-TPSM. For QWs, the opto-TPSM exhibits rectangular oscillations with increasing thickness and shows enhanced spiky oscillations with electron concentration per unit length. For QDs, the opto-TPSM increases with increasing film thickness exhibiting trapezoidal variations which occurs during quantum jumps and the length and breadth of the trapezoids are totally dependent on energy band constants. Under the condition of non-degeneracy, the results of opto-TPSM gets simplified into the well-known form of classical TPSM equation which the function of three constants only and being invariant of the signature of band structure.
Resumo:
The electron-energy equation for an atomic radiating plasma is considered in this work. Using the atomic model of Bates, Kingston and McWhirter, the radiation loss-term valid for all optical thicknesses is obtained. A study of the energy gained by electrons in inelastic collisions shows that the radiation loss term can be neglected only for rapidly-decaying or fast-growing plasmas. Emission from optically thin plasmas is considered next and an exact expression is given for the total radiation loss in a recombination continuum. A derivation of the Kramers-Unsöld approximation is presented and the error involved in estimating the total emitted recombination radiation by this approximation is shown to be small.
Resumo:
In this paper we shall study a fractional integral equation in an arbitrary Banach space X. We used the analytic semigroups theory of linear operators and the fixed point method to establish the existence and uniqueness of solutions of the given problem. We also prove the existence of global solution. The existence and convergence of the Faedo–Galerkin solution to the given problem is also proved in a separable Hilbert space with some additional assumptions on the operator A. Finally we give an example to illustrate the applications of the abstract results.
Resumo:
Using Thomé's procedure, the asymptotic solutions of the Frieman and Book equation for the two-particle correlation in a plasma have been obtained in a complete form. The solution is interpreted in terms of the Lorentz distance. The exact expressions for the internal energy and pressure are evaluated and they are found to be a generalization of the result obtained earlier by others.
Resumo:
The growth rates of the hydrodynamic modes in the homogeneous sheared state of a granular material are determined by solving the Boltzmann equation. The steady velocity distribution is considered to be the product of the Maxwell Boltzmann distribution and a Hermite polynomial expansion in the velocity components; this form is inserted into them Boltzmann equation and solved to obtain the coeificients of the terms in the expansion. The solution is obtained using an expansion in the parameter epsilon =(1 - e)(1/2), and terms correct to epsilon(4) are retained to obtain an approximate solution; the error due to the neglect of higher terms is estimated at about 5% for e = 0.7. A small perturbation is placed on the distribution function in the form of a Hermite polynomial expansion for the velocity variations and a Fourier expansion in the spatial coordinates: this is inserted into the Boltzmann equation and the growth rate of the Fourier modes is determined. It is found that in the hydrodynamic limit, the growth rates of the hydrodynamic modes in the flow direction have unusual characteristics. The growth rate of the momentum diffusion mode is positive, indicating that density variations are unstable in the limit k--> 0, and the growth rate increases proportional to kslash} k kslash}(2/3) in the limit k --> 0 (in contrast to the k(2) increase in elastic systems), where k is the wave vector in the flow direction. The real and imaginary parts of the growth rate corresponding to the propagating also increase proportional to kslash k kslash(2/3) (in contrast to the k(2) and k increase in elastic systems). The energy mode is damped due to inelastic collisions between particles. The scaling of the growth rates of the hydrodynamic modes with the wave vector I in the gradient direction is similar to that in elastic systems. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
In this paper, we present a wavelet - based approach to solve the non-linear perturbation equation encountered in optical tomography. A particularly suitable data gathering geometry is used to gather a data set consisting of differential changes in intensity owing to the presence of the inhomogeneous regions. With this scheme, the unknown image, the data, as well as the weight matrix are all represented by wavelet expansions, thus yielding the representation of the original non - linear perturbation equation in the wavelet domain. The advantage in use of the non-linear perturbation equation is that there is no need to recompute the derivatives during the entire reconstruction process. Once the derivatives are computed, they are transformed into the wavelet domain. The purpose of going to the wavelet domain, is that, it has an inherent localization and de-noising property. The use of approximation coefficients, without the detail coefficients, is ideally suited for diffuse optical tomographic reconstructions, as the diffusion equation removes most of the high frequency information and the reconstruction appears low-pass filtered. We demonstrate through numerical simulations, that through solving merely the approximation coefficients one can reconstruct an image which has the same information content as the reconstruction from a non-waveletized procedure. In addition we demonstrate a better noise tolerance and much reduced computation time for reconstructions from this approach.