302 resultados para Near earth objects
On the evaluation of stability of rare earth oxides as face coats for investment casting of titanium
Resumo:
Attempts have been made to evaluate the thermal stability of rare earth oxide face coats against liquid titanium. Determination of microhardness profiles and concentration profiles of oxygen and metallic constituents of oxide in investment cast titanium rods has allowed grActation of relative stability of rare earth oxides. The relative stability of evaluated oxides in the order of increasing stability follows the sequence CeO2 — ZrO2 — Gd2O3 — didymium oxide — Sm2O3 —Nd2O3 — Y2O3. The grading does not follow the free energy data of the formation of these oxides. A better correlation with the experimental observations is obtained when the solubility of the metallic species in titanium is also taken into consideration.
Resumo:
Rare earth cuprates, La2CuO4 Nd2CuO4, La1.8M0.2CuO4 (M=Ca.Sr) and Nd1.85Ce0.15CuO4 have been prepared by the combustion of redox mixtures containing corresponding metal nitrates and maleic hydrazide, C4H4N2O2, at 350°C. The solid combustion products are submicron size amorphous powders which on heat treatment (700°C, 30 minutes) yield crystalline single phase cuprates. Strontium doped lanthanum cuprate, La1.8Sr0.2CuO4, shows an onset of superconductivity at 36K.
Resumo:
The K-means algorithm for clustering is very much dependent on the initial seed values. We use a genetic algorithm to find a near-optimal partitioning of the given data set by selecting proper initial seed values in the K-means algorithm. Results obtained are very encouraging and in most of the cases, on data sets having well separated clusters, the proposed scheme reached a global minimum.
Resumo:
To investigate the nature of the curve of critical exponents (as a function of the distance from a double critical point), we have combined our measurements of the osmotic compressibility with all published data for quasibinary liquid mixtures. This curve has a parabolic shape. An explanation of this result is advanced in terms of the geometry of the coexistence dome, which is contained in a triangular prism.
Resumo:
Fine-particle rare-earth-metal zirconates, Ln2Zr2O7, where Ln = La, Ce, Pr, Nd, Sm, Gd and Dy having the pyrochlore structure have been prepared using a novel combustion process. The process employs aqueous solutions of the corresponding rare-earth-metal nitrate, zirconium nitrate and carbohydrazide/urea in the required molar ratio. When the solution is rapidly heated to 350–500 °C it boils, foams and burns autocatalytically to yield voluminous oxides. The formation of single-phase Ln2Zr2O7 has been confirmed by powder X-ray diffraction, infrared and fluorescence spectroscopy. The solid combustion products are fine, having surface areas in the range 6–20 m2 g–1. The cold-pressed Pr2Zr2O7 compact when sintered at 1500 °C, 4 h in air, achieved 99% theoretical density.
Resumo:
We conduct a numerical study of the dynamic behavior of a dense hard-sphere fluid by deriving and integrating a set of Langevin equations. The statics of the system is described by a free-energy functional of the Ramakrishnan-Yussouff form. We find that the system exhibits glassy behavior as evidenced through a stretched exponential decay and a two-stage relaxation of the density correlation function. The characteristic times grow with increasing density according to the Vogel-Fulcher law. The wave-number dependence of the kinetics is extensively explored. The connection of our results with experiment, mode-coupling theory, and molecular-dynamics results is discussed.
Photodissociation dynamics of small molecules: Dissociation of alkyl iodides in the near ultraviolet
Resumo:
We have consider ed the transient motion of art electrically conducting viscous compressible fluid which is in contact with an insulated infinite disk. The initial motion is considered to be due to the uniform rotation of the disk in an otherwise stationary fluid or due to the uniform rigid rotation of the fluid over a stationary disk. Different cases of transient motion due to finite impulse imparted either to the disk or to the distant fluid have been investigated. Effects of the imposed axial magnetic field and the disk temperature on the transient flow are included. The nonlinear partial differential equations governing the motion are solved numerically using an implicit finite-difference scheme along with the Newton's linearisation technique.
Resumo:
Rammed earth is used for load bearing walls of buildings and there is growing interest in this low carbon building material. This paper is focused on understanding the compaction characteristics and physical properties of compacted cement stabilised soil mixtures and cement stabilised rammed earth (CSRE). This experimental study addresses (a) influence of soil composition, cement content, time lag on compaction characteristics of stabilised soils and CSRE and (b) effect of moulding water content and density on compressive strength and water absorption of compacted cement stabilised soil mixes. Salient conclusions of the study are (a) compaction characteristics of soils are not affected by the addition of cement, (b) there is 50% fall in strength of CSRE for 10 h time lag, (c) compressive strength of compacted cement stabilised soil increases with increase in density irrespective of moulding moisture content and cement content, and (d) compressive strength increases with the increase in moulding water content and compaction of CSRE on the wet side of OMC is beneficial in terms of strength.
Resumo:
Strength and behaviour of cement stabilised rammed earth (CSRE) is a scantily explored area. The present study is focused on the strength and elastic properties of CSRE. Characteristics of CSRE are influenced by soil composition, density of rammed earth, cement and moisture content. The study is focused on examining (a) role of clay content of the soil on strength of CSRE and arriving at optimum clay fraction of the soil mix, (b) influence of moisture content, cement content and density on strength and (c) stress-strain relationships and elastic properties for CSRE. Major conclusions are (a) there is considerable difference between dry and wet compressive strength of CSRE and the wet to dry strength ratio depends upon the clay fraction of soil mix and cement content, (b) optimum clay fraction yielding maximum compressive strength for CSRE is about 16%, (c) strength of CSRE is highly sensitive to density and for a 20% increase in density the strength increases by 300-500% and (d) in dry state the ultimate strain at failure for CSRE is as high as 1.5%, which is unusual for brittle materials.
Resumo:
The similar to 2500 km long Himalayan arc has experienced three large to great earthquakes of M-w 7.8 to 8.4 during the past century, but none produced surface rupture. Paleoseismic studies have been conducted during the last decade to begin understanding the timing, size, rupture extent, return period, and mechanics of the faulting associated with the occurrence of large surface rupturing earthquakes along the similar to 2500 km long Himalayan Frontal Thrust (HFT) system of India and Nepal. The previous studies have been limited to about nine sites along the western two-thirds of the HFT extending through northwest India and along the southern border of Nepal. We present here the results of paleoseismic investigations at three additional sites further to the northeast along the HFT within the Indian states of West Bengal and Assam. The three sites reside between the meizoseismal areas of the 1934 Bihar-Nepal and 1950 Assam earthquakes. The two westernmost of the sites, near the village of Chalsa and near the Nameri Tiger Preserve, show that offsets during the last surface rupture event were at minimum of about 14 m and 12 m, respectively. Limits on the ages of surface rupture at Chalsa (site A) and Nameri (site B), though broad, allow the possibility that the two sites record the same great historical rupture reported in Nepal around A.D. 1100. The correlation between the two sites is supported by the observation that the large displacements as recorded at Chalsa and Nameri would most likely be associated with rupture lengths of hundreds of kilometers or more and are on the same order as reported for a surface rupture earthquake reported in Nepal around A.D. 1100. Assuming the offsets observed at Chalsa and Nameri occurred synchronously with reported offsets in Nepal, the rupture length of the event would approach 700 to 800 km. The easternmost site is located within Harmutty Tea Estate (site C) at the edges of the 1950 Assam earthquake meizoseismal area. Here the most recent event offset is relatively much smaller (<2.5 m), and radiocarbon dating shows it to have occurred after A.D. 1100 (after about A.D. 1270). The location of the site near the edge of the meizoseismal region of the 1950 Assam earthquake and the relatively lesser offset allows speculation that the displacement records the 1950 M-w 8.4 Assam earthquake. Scatter in radiocarbon ages on detrital charcoal has not resulted in a firm bracket on the timing of events observed in the trenches. Nonetheless, the observations collected here, when taken together, suggest that the largest of thrust earthquakes along the Himalayan arc have rupture lengths and displacements of similar scale to the largest that have occurred historically along the world's subduction zones.
Resumo:
The 21st century poses many challenges for global sustainability. Among them, most importantly, the human race will encounter scarcity of raw materials and conventional energy resources. And, India may have to take the brunt of these problems as it is going to be the most populated region of the world with concomitant increase in energy demand and requirement of other resources. India will be the testing ground for introducing newer ways of green technology and innovative principles of resource management and utilization. With the vagaries of potential climate change gathering clouds in the background, Earth sciences will have a special and predominant role in guiding the society in prioritizing our resource discovery, utilization and their consumption and the upkeep of environment. On the fundamental level, Earth sciences are going through a most exciting phase of development as a born-again science. Technological breakthroughs including the satellite-based observations augur well for gaining new insights into Earth processes. A set of exciting fundamental problems that are globally identified will set the stage for an exhilarating period of new discoveries. Improvements in numerical and computer-based techniques will assist in modelling of Earth processes to unprecedented levels. India will have to take special effort in improving the existing experimentation facilities in the Earth science departments of the country, and also the general level of Earth science education to meet the global standards. This article presents an Earth science vision for the 21st century in an Indian context.
Resumo:
A novel optical method is proposed and demonstrated, for real-time dimension estimation of thin opaque cylindrical objects. The methodology relies on free-space Fraunhofer diffraction principle. The central region, of such tailored diffraction pattern obtained under suitable choice of illumination conditions, comprises of a pair of `equal intensity maxima', whose separation remains constant and independent of the diameter of the diffracting object. An analysis of `the intensity distribution in this region' reveals the following. At a point symmetrically located between the said maxima, the light intensity varies characteristically with diameter of the diffracting object, exhibiting a relatively stronger intensity modulation under spherical wave illumination than under a plane wave illumination. The analysis reveals further, that the said intensity variation with diameter is controllable by the illumination conditions. Exploiting these `hitherto unexplored' features, the present communication reports for the first time, a reliable method of estimating diameter of thin opaque cylindrical objects in real-time, with nanometer resolution from single point intensity measurement. Based on the proposed methodology, results of few simulation and experimental investigations carried-out on metallic wires with diameters spanning the range of 5 to 50 mu m, are presented. The results show that proposed method is well-suited for high resolution on-line monitoring of ultrathin wire diameters, extensively used in micro-mechanics and semiconductor industries, where the conventional diffraction-based methods fail to produce accurate results.
Resumo:
Let A and B be two objects. We define measures to characterize the penetration of A and B when A boolean AND B not equal 0. We then present properties of the measures and efficient algorithms to compute them for planar and polyhedral objects. We explore applications of the measures and present some experimental results.