514 resultados para palladium(II)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reaction between PdCl2 and 1-alkyl-2-(arylazo)imidazole (RaaiR') or 1-alkyl-2-(naphthyl-alpha/beta-azo)imidazole (alpha/beta-NaiR') under reflux in ethanol has isolated complexes of compositions Pd(RaaiR')(2)Cl-2 (5, 6) and Pd(alpha/beta-NaiR')(2)Cl-2 (7, 8). The X-ray structure determination of one of the molecules, Pd(alpha-NaiBz)(2)Cl-2 (7c), has reported a trans-PdCl2 configuration, and alpha-NaiBz acts as monodentate N(imidazole) donor ligand. The spectral (IR, UV-vis, H-1 NMR) data support the structure. UV light irradiation (light source: Perkin-Elmer LS 55 spectrofluorimeter, Xenon discharge lamp, lambda = 360-396 nm) in a MeCN solution of the complexes shows E-to-Z isomerization of the coordinated azoimidazole unit. The reverse transformation, Z-to-E, is very slow with visible light irradiation. Quantum yields (phi(E-Z)) of E-to-Z isomerization are calculated, and phi is lower than that of the free ligand but comparable with those of Cd(II) and Hg(II) complexes of the same ligand. The Z-to-E isomerization is a thermally induced process. The activation energy (E-a) of Z-to-E isomerization is calculated by controlled-temperature experimentation. cis-Pd(azoimidazole)Cl-2 complexes (azomidazole acts as N(imidazole) and N(azo) Chelating ligand) do not respond upon light irradiation, which supports the idea that the presence of noncoordinated azo-N to make free azo (-N=N-) function is important to reveal photochromic activity. DFT calculation of Pd(alpha-NaiBz)(2)Cl-2 (7c) has suggested that the HOMO of the molecule is constituted of Pd (32%) and Cl (66%), and hence photo excitation may use the energy of Pd and Cl instead of that of the photofunctional -N=N-Ar motif; thus, the rate of photoisomerization and quantum yield decrease versus the free ligand values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nickel(I1) and palladium(I1) complexes of the types Ni(R-IAI)(IAI'), Pd(IAI)(IAI'), and Pd(R-IAI), , where IAI and IAI' represent isonitrosoacetylacetone imine and R-IAI represents its Aralkyl derivative, have been prepared. The molar conductance, molecular weight, magnetic moment, and ir, pmr, and electronic spectra of these com- plexes have been studied. It is suggested that the isonitroso group of R-IAI coordinates through the nitrogen and that of IAI' thiough the oxygen in Ni(R-IAI)(IAI'). In Pd(R-IAI), the isonitroso groups of both ligands coordinate through nitrogen while Pd(IAI)(IAI') has a structure similar to that of Ni(R-IAI)(IAI'). The amine- exchange reactions of nickel(I1) and palladium(I1) complexes are discussed and compared on the basis of their structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Preparation and structural characterization of palladium (II) complexes of ligands III-V and copper (II) complexes of III are reported. The elemental analyses of the complexes show that the metal: ligand ratio is 1 : 2. The electrical conductance in acetone shows the non-electrolytic nature of the complexes. The diamagnetic character suggests a gross square-planar geometry for the palladium (II) complexes. Copper (II) complexes are paramagnetic with/~eff.~l'90 B.M. Spectral data suggest that in all the complexes the ligand coordinates to the metal (II) symmetrically through isonitroso-nitrogen and imine-nitrogen, forming a ¡ membered chelate ring. Amine-exchange reactions of the complexes are discussed and compared on the basis of their structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nature of interaction of palladium(II) with calf thymus DNA was studied using viscometry, ultraviolet, visible and infrared spectrophotometry and optical rotatory disperison and circular dichroism measurements. The results indicate that Pd(II) interacts with both the phosphate and bases of DNA. The ORD/CD data indicate that the binding of Pd(II) to DNA brings about considerable conformational changes in DNA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methods for the preparation of palladium(II) complexes of the type Pd(R-IAI)(IAI'), where IAI' is the anion of isonitrosoacetylacetoneimine and R-IAI, its N-alkyl or N-aryl derivative, are given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sodium ethylselenolates with functional groups X (where X = -OH, -COOH, -COOMe and -COOEt) at beta-carbon were prepared in situ by reductive cleavage of corresponding diselenide with NaBH4 either in methanol or aqueous ammonia. Treatment of these selenolates with [M2Cl2(mu-Cl)(2)(PR'(3))(2)] (M = Pd or Pt; PR'(3) = PMePh2, PnPr(3)) in different stoichiometry yielded various bi- and tri-nuclear complexes. The homoleptic hexanuclear complexes [Pd(mu-SeCH2CH2X)(2)](6) (X = OH, COOH, COOEt), were obtained by reacting Na2PdCl4 with NaSeCH2CH2X. All these complexes have been fully characterized. Molecular structures of ethylselenolates containing hydroxyl and carboxylic acid groups revealed solid state associated structures through inter-molecular hydrogen bond interactions. Trinuclear complex, [Pd3Cl2(mu-SeCH2CH2COOH)(4)(PnPr(3))(2)] (3a), was disposed in a boat form unlike chair conformation observed for the corresponding methylester complex. The effect of beta-functionality in ethylselenolate ligands towards reactivity, structures and thermal properties of palladium and platinum complexes has been extensively Studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reactions of N,N′-n-propylene-bis(acetylacetoneimino) metal (II), M[n-P-(AI)2], where M=Ni(II) or Pd(II), with nitrosating reagents have been investigated. Mono- and di-nitrosated complexes were obtained selectively, depending upon the concentration of the nitrosating reagents and the reaction time. In both the cases, the γ-CH group is transformed to an ambidentate isonitroso group (>C=NOH), which coordinates to the metal ion by dislodging the already coordinated carbonyl group. The factors influencing the mode of binding of the isonitroso group have been discussed. The bromination reactions of the mono-nitrosated products of M[n-P-(AI)2] and Pd (II) complexes, Pd [E/i-P-(AI)2], where E/i-P-(AI)2 is a dianion of ethylene/i-propylene-bis (acetylacetoneimine), are also reported. The reaction products have been characterized by elemental analyses, electrical conductivity molecular weight determination, and ir, pmr and electronic spectral data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reactions of bis(isonitrosoethylacetoacetato)palladium(II), Pd(IEAA)2,with straight chain non-bulky alkylamines, RNH2(R = CH3, C2H5, n-C3H7or n-C4H9) in the mole ratio 1:1 gave bis (B-alkylisonitrosoethylacetoacetateimino)Palladium(II), Pd(R-IEAI)2. In this reaction the coordinated carbonyl groups of Pd(IEAA)2 undergo condensation with amines fo rming Schiff bases (>CNR). On the other hand, the reactions of Pd(IEAA)2 with a large excess of amine yielded N-alkylamido bridgedisonitrosoethylacetoacetatedipalladium(II), μ-(NHR)2[Pd(IEAA)]2 complexes. The complexes are characterized by elemental analyses, magnetic susceptib ility, i.r., p.m.r. and in some cases, nitrogen 1s X-ray photoelectron and mass spectral studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The C-nitrosation of bivalent quadridentate β-imino ketone complexes of nickel(II), copper(II), and palladium(II), with nitrosating reagents has been investigated. The chemical analysis and spectroscopic results reveal that one of the α-CH groups of the coordinated lignad undergoes selective nitrosation forming mono(hydroxyimino) derivative. The hydroxyimino group introduced coordinates through either N- or O- atom to metal(II) by dislodging the carbonyl group already coordinated. This gives rise to two linkage isomers, one with N-bonded and the other with O-bonded hydroxyimino group in the case of nickel(II) (except for 1d) and palladium(II), and a single isomer with O-bonded hydroxyimino group in copper(II) complexes. The isomers obtained from 1b and 1i have been separated by column chromatography. In chloroform each of the isomers of nickel(II) isomerizes to give an equilibrium mixture of two isomers, but not those of copper(II) and palladium(II).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reactions of the bis(3,5-dimethylpyrazolyl)cyclotriphosphazene derivatives gem-N3P3(MeNCH(2)CH(2)O)(2)(dmp)(2) (1) and nongeminal cis-N3P3(OPh)(4)(dmp)(2) (2) with PdCl2 afford complexes of the type [PdCl2.(L)] (L = 1 or 2). In these complexes, the phosphazenes act as bidentate NN-donor ligands with the two pyrazolyl pyridinic nitrogen atoms bonded to the metal, thus forming a six- and an eight-membered chelate ring, respectively. The structures of 2 and [PdCl2.(2)] (4) have been confirmed by single-crystal X-ray diffraction. Crystal data for 2: a = 16.759(2) Angstrom, b = 10.788(3) Angstrom, c = 19.635(9) Angstrom, beta = 101.61(3)degrees, P2(1/c), Z = 4, R = 0.038 for 4688 reflections with F > 5 sigma(F). Crystal data for 4: a = 9.701(3) Angstrom, b = 24.853(4) Angstrom, c = 15.794(4) Angstrom, beta = 101.46(2)degrees, P2(1/n), Z = 4, R = 0.030 for 5416 reflections with F > 5 sigma(F).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Palladium substituted in cerium dioxide in the form of a solid solution, Ce-0.98 Pd-0.02 O-1.98 is a new heterogeneous catalyst which exhibits high activity and 100% trans-selectivity for the Heck reactions of aryl bromides including heteroaryls with olefins. The catalytic reactions work without any ligand. Nano-crystalline Ce-0.98 Pd-0.02 O-1.98 is prepared by solution combustion method and Pd is in +2 state. The catalyst can be separated, recovered and reused without significant loss in activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four novel mononuclear Pd(II) complexes have been synthesized with the biologically active Schiff base ligands (L-1-L-4) derived from 3-amino-2-methyl-4(3H)-quinazolinone. The structure of the complexes has been proposed by elemental analysis, molar conductance, IR, H-1 NMR, mass, UV-Vis spectrometric and thermal studies. The investigation of interaction of the complexes with calf thymus DNA (CT-DNA) has been performed with absorption and fluorescence spectroscopic studies. The nuclease activity was done using pUC19 supercoiled DNA by gel-electrophoresis. All the ligands and their Pd(II) complexes have also been screened for their antibacterial activity by discolor diffusion technique. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamic supramolecular systems involving a tetratopic palladium(II) acceptor and three different pyridine-and imidazole-based donors have been used for self-selection by a synergistic effect of morphological information and coordination ability of ligands through specific coordination interactions. Three different cages were first synthesized by two-component self-assembly of individual donor and acceptor. When all four components were allowed to interact in a reaction mixture, only one out of three cages was isolated. The preferential binding affinity towards a particular partner was also established by transforming a non-preferred cage into a preferred cage by interaction with the appropriate ligand. Computational studies further supported the fact that coordination interaction of imidazole moiety to Pd-II is enthalpically more preferred compared to pyridine, which drives the selection process. Analysis of crystal packing of both complexes indicated the presence of strong hydrogen bonds between nitrate and water molecules and also H-bonded 3D networks of water. Both complexes exhibit promising proton conductivity (10(-5) to ca. 10(-3) Scm(-1)) at ambient temperature under a relative humidity of circa 98% with low activation energy.