60 resultados para maximum osmotic potential at saturation point


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, an attempt has been made to prepare the seismic intensity map for south India considering the probable earthquakes in the region. Anbazhagan et al. (Nat Hazards 60:1325-1345, 2012) have identified eight probable future earthquake zones in south India based on rupture-based seismic hazard analysis. Anbazhagan et al. (Eng Geol 171:81-95, 2014) has estimated the maximum future earthquake magnitude at these eight zones using regional rupture character. In this study, the whole south India is divided into several grids of size 1(o) x 1(o) and the intensity at each grid point is calculated using the regional intensity model for the maximum earthquake magnitude at each of the eight zones. The intensity due to earthquakes at these zones is mapped and thus eight seismic intensity maps are prepared. The final seismic intensity map of south India is obtained by considering the maximum intensity at each grid point due to the estimated earthquakes. By looking at the seismic intensity map, one can expect slight to heavy damage due to the probable earthquake magnitudes. Heavy damage may happen close to the probable earthquake zones.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report preliminary experiments on the ternary-liquid mixture, methyl ethyl ketone (MEK)+water (W)+secondary butyl alcohol (sBA)-a promising system for the realization of the quadruple critical point (QCP). The unusual tunnel-shaped phase diagram shown by this system is characterized and visualized by us in the form of a prismatic phase diagram. Light-scattering experiments reveal that (MEK+W+sBA) shows near three-dimensional-Ising type of critical behavior near the lower critical solution temperatures, with the susceptibility exponent (gamma) in the range of 1.217 <=gamma <= 1.246. The correlation length amplitudes (xi(o)) and the critical exponent (nu) of the correlation length (xi) are in the ranges of 3.536 <=xi(o)<= 4.611 A and 0.619 <=nu <= 0.633, respectively. An analysis in terms of the effective susceptibility exponent (gamma(eff)) shows that the critical behavior is of the Ising type for MEK concentrations in the ranges of 0.1000 <= X <= 0.1250 and X >= 0.3000. But, for the intermediate range of 0.1750 <= X < 0.3000, the system shows a tendency towards mean-field type of critical behavior. The advantages of the system (MEK+W+sBA) over the system (3-methylpyridine+water+heavy water+potassium Iodide) for the realization of a QCP are outlined.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An iterative image reconstruction technique employing B-Spline potential function in a Bayesian framework is proposed for fluorescence microscopy images. B-splines are piecewise polynomials with smooth transition, compact support and are the shortest polynomial splines. Incorporation of the B-spline potential function in the maximum-a-posteriori reconstruction technique resulted in improved contrast, enhanced resolution and substantial background reduction. The proposed technique is validated on simulated data as well as on the images acquired from fluorescence microscopes (widefield, confocal laser scanning fluorescence and super-resolution 4Pi microscopy). A comparative study of the proposed technique with the state-of-art maximum likelihood (ML) and maximum-a-posteriori (MAP) with quadratic potential function shows its superiority over the others. B-Spline MAP technique can find applications in several imaging modalities of fluorescence microscopy like selective plane illumination microscopy, localization microscopy and STED. (C) 2015 Author(s).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We use Floquet theory to study the maximum value of the stroboscopic group velocity in a one-dimensional tight-binding model subjected to an on-site staggered potential varying sinusoidally in time. The results obtained by numerically diagonalizing the Floquet operator are analyzed using a variety of analytical schemes. In the low-frequency limit we use adiabatic theory, while in the high-frequency limit the Magnus expansion of the Floquet Hamiltonian turns out to be appropriate. When the magnitude of the staggered potential is much greater or much less than the hopping, we use degenerate Floquet perturbation theory; we find that dynamical localization occurs in the former case when the maximum group velocity vanishes. Finally, starting from an ``engineered'' initial state where the particles (taken to be hard-core bosons) are localized in one part of the chain, we demonstrate that the existence of a maximum stroboscopic group velocity manifests in a light-cone-like spreading of the particles in real space.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new physically based classical continuous potential distribution model, particularly considering the channel center, is proposed for a short-channel undoped body symmetrical double-gate transistor. It involves a novel technique for solving the 2-D nonlinear Poisson's equation in a rectangular coordinate system, which makes the model valid from weak to strong inversion regimes and from the channel center to the surface. We demonstrated, using the proposed model, that the channel potential versus gate voltage characteristics for the devices having equal channel lengths but different thicknesses pass through a single common point (termed ``crossover point''). Based on the potential model, a new compact model for the subthreshold swing is formulated. It is shown that for the devices having very high short-channel effects (SCE), the effective subthreshold slope factor is mainly dictated by the potential close to the channel center rather than the surface. SCEs and drain-induced barrier lowering are also assessed using the proposed model and validated against a professional numerical device simulator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the direct observation of electrochemical potential and local transport field variations near scatterers like grain boundaries, triple points, and voids in thin platinum films studied by scanning tunneling potentiometry. The field is highest at a void, followed by a triple point and a grain boundary. The local transport field near a void can even be four orders of magnitude higher than the macroscopic field, indicating that the void is the most likely place for an electromigration induced failure. The field build up for a particular type of scatterer depends on the grain connectivity. We estimate an average grain boundary reflection coefficient for the film from the temperature dependence of its resistivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fermentation characteristics of six specific types of the organic fraction of municipal solid waste (OFMSW) were examined, with an emphasis on properties that are needed when designing plug-flow type anaerobic bioreactors. More specifically, the decomposition patterns of a vegetable (cabbage), fruits (banana and citrus peels), fresh leaf litter of bamboo and teak leaves, and paper (newsprint) waste streams as feedstocks were studied. Individual OFMSW components were placed into nylon mesh bags and subjected to various fermentation periods (solids retention time, SRT) within the inlet of a functioning plug-flow biogas fermentor. These were removed at periodic intervals, and their composition was analyzed to monitor decomposition rates and changes in chemical composition. Components like cabbage waste, banana peels, and orange peels fermented rapidly both in a plug-flow biogas reactor (PFBR) as well as under a biological methane potential (BMP) assay, while other OFMSW components (leaf litter from bamboo and teak leaves and newsprint) fermented slowly with poor process stability and moderate biodegradation. For fruit and vegetable wastes (FVW), a rapid and efficient removal of pectins is the main cause of rapid disintegration of these feedstocks, which left behind very little compost forming residues (2–5%). Teak and bamboo leaves and newsprint decomposed only to 25–50% in 30 d. These results confirm the potential for volatile fatty acids accumulation in a PFBR’s inlet and suggest a modification of the inlet zone or operation of a PFBR with the above feedstocks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As the conventional MOSFET's scaling is approaching the limit imposed by short channel effects, Double Gate (DG) MOS transistors are appearing as the most feasible candidate in terms of technology in sub-45nm technology nodes. As the short channel effect in DG transistor is controlled by the device geometry, undoped or lightly doped body is used to sustain the channel. There exits a disparity in threshold voltage calculation criteria of undoped-body symmetric double gate transistors which uses two definitions, one is potential based and the another is charge based definition. In this paper, a novel concept of "crossover point'' is introduced, which proves that the charge-based definition is more accurate than the potential based definition.The change in threshold voltage with body thickness variation for a fixed channel length is anomalous as predicted by potential based definition while it is monotonous for charge based definition.The threshold voltage is then extracted from drain currant versus gate voltage characteristics using linear extrapolation and "Third Derivative of Drain-Source Current'' method or simply "TD'' method. The trend of threshold voltage variation is found same in both the cases which support charge-based definition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As the conventional MOSFETs scaling is approaching the limit imposed by short channel effects, Double Gate (DG) MOS transistors are appearing as the most feasible andidate in terms of technology in sub-45nm technology nodes. As the short channel effect in DG transistor is controlled by the device geometry, undoped or lightly doped body, is used to sustain the channel. There exits a disparity in threshold voltage calculation criteria of undoped-body symmetric double gate transistors which uses two definitions, one is potential based and the another is charge based definition. In this paper, a novel concept of "crossover point" is introduced, which proves that the charge-based definition is more accurate than the potential based definition. The change in threshold voltage with body thickness variation for a fixed channel length is anomalous as predicted by, potential based definition while it is monotonous for change based definition. The threshold voltage is then extracted from drain currant versus gate voltage characteristics using linear extrapolation and "Third Derivative of Drain-Source Current" method or simply "TD" method. The trend of threshold voltage variation is found some in both the cases which support charge-based definition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The charge at which adsorption of orgamc compounds attains a maximum ( \sigma MAX M) at an electrochenucal interface is analysed using several multi-state models in a hierarchical manner The analysis is based on statistical mechamcal results for the following models (A) two-state site parity, (B) two-state muhl-slte, and (C) three-state site parity The coulombic interactions due to permanent and reduced dipole effects (using mean field approximation), electrostatic field effects and specific substrate interactions have been taken into account. The simplest model in the hierarchy (two-state site parity) yields the exphcit dependence of ( \sigma MAX M) on the permanent dipole moment, polarizability of the solvent and the adsorbate, lattice spacing, effective coordination number, etc Other models in the baerarchy bring to hght the influence of the solvent structure and the role of substrate interactions, etc As a result of this approach, the "composition" of oM.x m terms of the fundamental molecular constants becomes clear. With a view to use these molecular results to maxamum advantage, the derived results for ( \sigma MAX M) have been converted into those involving experimentally observable parameters lake Co, C 1, E N, etc Wherever possible, some of the earlier phenomenologlcal relations reported for ( \sigma MAX M), notably by Parsons, Damaskm and Frumkln, and Trasattl, are shown to have a certain molecular basis, vlz a simple two-state sate panty model.As a corollary to the hxerarcbacal modelling, \sigma MAX M and the potential corresponding to at (Emax) are shown to be constants independent of 0max or Corg for all models The lmphcatlon of our analysis f o r OmMa x with respect to that predicted by the generalized surface layer equation (which postulates Om~ and Ema x varlaUon with 0) is discussed in detail Finally we discuss an passing o M. and the electrosorptlon valency an this context.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two different definitions, one is potential based and the other is charge based, are used in the literatures to define the threshold voltage of undoped body symmetric double gate transistors. This paper, by introducing a novel concept of crossover point, proves that the charge based definition is more accurate than the potential based definition. It is shown that for a given channel length the potential based definition predicts anomalous change in threshold voltage with body thickness variation while the charge based definition results in monotonous change. The threshold voltage is then extracted from drain current versus gate voltage characteristics using linear extrapolation, transconductance and match-point methods. In all the three cases it is found that trend of threshold voltage variation support the charge based definition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The heat and mass transfer for unsteady laminar compressible boundary-layer flow, which is asymmetric with respect to a 3-dimensional stagnation point (i.e. for a jet incident at an angle on the body), have been studied. It is assumed that the free-stream velocity, wall temperature, and surface mass transfer vary arbitrarily with time and also that the gas has variable properties. The solution in the neighbourhood of the stagnation point has been obtained by series expansion in the longitudinal distance. The resulting partial differential equations have been solved numerically using an implicit finite-difference scheme. The results show that, in contrast with the symmetric flow, the maximum heat transfer does not occur at the stagnation point. The skin-friction and heat-transfer components due to asymmetric flow are only weakly affected by the mass transfer as compared to those components associated with symmetric flow. The variation of the wall temperature with time has a strong effect on the heat transfer component associated with the symmetric part of the flow. The skin friction and heat transfer are strongly affected by the variation of the density-viscosity product across the boundary layer. The skin friction responds more to the fluctuations of the free stream oscillating velocities than the heat transfer. The results have been compared with the available results and they are found to be in excellent agreement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The unsteady laminar compressible boundary-layer flow over two-dimensional and axisymmetric bodies at the stagnation point with mass transfer has been studied for all second-order boundary layer effects when the basic potential flow admits selfsimilarity. The solutions for the governing equations are obtained by using an implicit finite-difference scheme. Computations have been carried out for different values of the parameters characterizing the unsteadiness in the free stream velocity, wall temperature, mass transfer rate and variable gas properties. The results are found to be strongly affected by the unsteadiness in the free stream velocity. For large injection rates the second-orderboundary layer effects may prevail over the first-order boundary layer, but reverse is true for suction. The wall temperature and the variation of the density-viscosity product across the boundary layer appreciably change the skin-friction and heat-transfer rates due to second-order boundary-layer effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The application of an algorithm shows that maximum uniformity of film thickness on a rotating substrate is achieved for a normalized source-to-substrate distance ratio, h/r =1.183.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Practical applications of vacuum as an insulator necessitated determining the low-pressure breakdown characteristics of long gap lengths of a point-plane electrode system. The breakdown voltage has been found to vary as the square root of the gap length. Further, with the point electrode as the anode, the values of the breakdown voltages obtained have been found to be larger than those obtained with a plane-parallel electrode system at a corresponding gap length. By applying the theory of the anode heating mechanism as the cause for breakdown, the results have been justified, and by utilizing a field efficiency factor which is the ratio of the average to maximum field, an empirical criterion has been developed. This criterion helps in calculating the breakdown voltage of a nonuniform gap system by the knowledge of the breakdown voltage of a plane-parallel electrode system.