231 resultados para conduction band electrons


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose a physics-based simplified analytical model of the energy band gap and electron effective mass in a relaxed and strained rectangular 100] silicon nanowires (SiNWs). Our proposed formulation is based on the effective mass approximation for the nondegenerate two-band model and 4 x 4 Luttinger Hamiltonian for energy dispersion relation of conduction band electrons and the valence band heavy and light holes, respectively. Using this, we demonstrate the effect of the uniaxial strain applied along 100]-direction and a biaxial strain, which is assumed to be decomposed from a hydrostatic deformation along 001] followed by a uniaxial one along the 100]-direction, respectively, on both the band gap and the transport and subband electron effective masses in SiNW. Our analytical model is in good agreement with the extracted data using the extended-Huckel-method-based numerical simulations over a wide range of device dimensions and applied strain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a simplified and quantitative analysis of the Seebeck coefficient in degenerate bulk and quantum well materials whose conduction band electrons obey Kane's non-parabolic energy dispersion relation. We use k.p formalism to include the effect of the overlap function due to the band non-parabolicity in the Seebeck coefficient. We also address the key issues and the conditions in which the Seebeck coefficient in quantum wells should exhibit oscillatory dependency with the film thickness under the acoustic phonon and ionized impurity scattering. The effect of screening length in degenerate bulk and quantum wells has also been generalized for the determination of ionization scattering. The well-known expressions of the Seebeck coefficient in non-degenerate wide band gap materials for both bulk and quantum wells has been obtained as a special case and this provides an indirect proof of our generalized theoretical analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photocatalysis refers to the oxidation and reduction reactions on semiconductor surfaces, mediated by the valence band holes and conduction band electrons, which are generated by the absorption of ultraviolet or visible light radiation. Photocatalysis is widely being practiced for the degradation and mineralization of hazardous organic compounds to CO2 and H2O, reduction of toxic metal ions to their non-toxic states, deactivation and destruction of water borne microorganisms, decomposition of air pollutants like volatile organic compounds, NOx, CO and NH3, degradation of waste plastics and green synthesis of industrially important chemicals. This review attempts to showcase the well established mechanism of photocatalysis, the use of photocatalysts for water and air pollution control,visible light responsive modified-TiO2 and non-TiO2 based materials for environmental and energy applications, and the importance of developing reaction kinetics for a comprehensive understanding and design of the processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A semiconductor with almost overlapping conduction bands b and c is considered. It is found that an attractive interaction leading to superconductivity can be induced between electrons in the conduction band b by a strong radiation field of monochromatic photons whose energy differs slightly from the band gap Ebc. The mechanism is the exchange of a photon and a phonon between the interacting electrons and the interaction is found to be proportional to the photon density.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we address a physics based closed form model for the energy band gap (E-g) and the transport electron effective mass in relaxed and strained 100] and 110] oriented rectangular Silicon Nanowire (SiNW). Our proposed analytical model along 100] and 110] directions are based on the k.p formalism of the conduction band energy dispersion relation through an appropriate rotation of the Hamiltonian of the electrons in the bulk crystal along 001] direction followed by the inclusion of a 4 x 4 Luttinger Hamiltonian for the description of the valance band structure. Using this, we demonstrate the variation in Eg and the transport electron effective mass as function of the cross-sectional dimensions in a relaxed 100] and 110] oriented SiNW. The behaviour of these two parameters in 100] oriented SiNW has further been studied with the inclusion of a uniaxial strain along the transport direction and a biaxial strain, which is assumed to be decomposed from a hydrostatic deformation along 001] with the former one. In addition, the energy band gap and the effective mass of a strained 110] oriented SiNW has also been formulated. Using this, we compare our analytical model with that of the extracted data using the nearest neighbour empirical tight binding sp(3)d(5)s* method based simulations and has been found to agree well over a wide range of device dimensions and applied strain. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The results of an EPR investigation are presented on the paramagnetic trap-centres produced on hydrothermally prepared TiO2 particles during water photolysis at room temperature under band-gap irradiation. The trapped holes correspond to O− species adjacent to cation vacancies that are formed to compensate the hydroxyl ions in the subsurface layers. The trapped electrons are accounted for as Ti3+ in the conduction band or Ti3+ - adjoining oxygen vacancy to form shallow donor states. Although hole-centres are normally stabler than electron-centres, strongly adsorbed donor molecules reverse the stability. Concentration of hole-centres is increased by the presence of platinum on TiO2 surface and electron-centres are not detected on Pt/TiO2 during water photolysis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Single-phase LaNi1-xMnxO3 samples in the compositional range 0conduction band at x=0.05. Below 200K, the x=0.05 sample forms superparamagnetic clusters, and below 40K there is evidence for an antiferromagnet spin-density wave. Comparisons with LaCo0.95Mn0.05O3 and La0.98Sr0.02CoO3 confirm that the long-range magnetic coupling occurs via solvent electrons in a narrow conduction band. The conductivity changes from that of a narrow-band metal for x<0.01 to that more characteristic of diffusive motion for x>0.05, but any motional enthalpy appears to remain small ( Delta Hm approximately=0). The x=0.1 sample exhibits ferrimagnetic spin glass behaviour below 40K, and the ferromagnetic interactions increase with manganese concentration. The oxide with x=0.50 is ferromagnetic with a well defined Curie temperature.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Donor doped BaTiO3 ceramics become insulating5 under controlled conditions with effective dielectric constants >10. The changes in EPR signals indicate that a certain fraction of the donor doped BaTiO3 is cubic even at room temperature and that the cubic fraction increases with the donor content. X-ray powder diffraction data support the EPR results. The coexistence of both the phases over a range of temperature is characteristic of diffused phase transition. The effect of grain size variation on EPR signal intensities indicate that the boundary layers surrounding the grains may constitute the cubic phase as a result of higher Ba-vacancies and donor contents at the grain boundary layer than in the bulk. Since the acceptor states arising from the Ba-vacancies and the impurities are activated in the cubic phase, they capture electrons from the conduction band, rendering the cubic phase electrically more insulating than the semiconductive tetragonal grain interiors. Thus, the cubic grain boundary layers act as effective dielectric media where the field tends to concentrate.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

InN layers were directly grown on Ge substrate by plasma-assisted molecular beam epitaxy (PAMBE). The valence band offset (VBO) of wurtzite InN/Ge heterojunction is determined by X-ray photoemission spectroscopy (XPS). The valence band of Ge is found to be 0.18 +/- 0.04 eV above that of InN and a type-II heterojunction with a conduction band offset (CBO) of similar to 0.16 eV is found. The accurate determination of the VBO and CBO is important for the design of InN/Ge based electronic devices. (C) 2011 Elsevier B.A. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The chemical potentials of tin in its α-solid solutions with Cu, Au and Cu + Au alloys have been measured using a gas-solid equilibration technique. The variation of the excess chemical potential of tin with its composition in the alloy is related to the solute-solute repulsive interaction, while the excess chemical potential at infinite dilution of the solute is a measure of solvent-solute interaction energies. It is shown that solute-solute interaction is primarily determined by the concentration of (s + p) electrons in the conduction band, although the interaction energies are smaller than those predicted by either the rigid band model or calculation based on Friedel oscillations in the potential function. Finally, the variation of the solvent-solute interaction with solvent composition in the ternary system can be accounted for in terms of a quasi-chemical treatment which takes into account the clustering of the solvent atoms around the solute.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

When radiation of sufficiently high energy is incident on the surface of a semiconductor photocathode, electrons are excited from the valence band to the conduction band and these may contribute to the photocurrent. The photocurrent in a single-layer cathode is found to be small, because of collisions within the cathode material, the electron affinity condition, etc. It is observed that when a thin layer of n-type cesium antimonide (Cs3Sb) is deposited over a p-type layer of sodium potassium antimonide (Na2KSb), there occurs a sharp rise in the photocurrent. The causes for the dramatic increase in the photocurrent obtainable from a sodium potassium antimonide cathode, by depositing a thin layer of cesium antimonide are analyzed in this article. It has been shown that the interface between sodium potassium antimonide and cesium antimonide can result in lowering of the electron affinity to a level below the bottom of the conduction band of sodium potassium antimonide. The drift field that arises at the heterointerface enables the electrons to reach the surface, leading to the emission of almost all the photogenerated electrons within the cathode. The processes involved in photoemission from such a double-layer cathode are examined from a theoretical point of view. The spectral response of the two-layer cathode is also found to be better than that of a single-layer cathode.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The band offsets in InN/p-Si heterojunctions are determined by high resolution x-ray photoemission spectroscopy. The valence band of InN is found to be 1.39 eV below that of Si. Given the bandgap of 0.7 eV for InN, a type-III heterojunction with a conduction band offset of 1.81 eV was found. Agreement between the simulated and experimental data obtained from the heterojunction spectra was found to be excellent, establishing that the method of determination was accurate. The charge neutrality level (CNL) model provided a reasonable description of the band alignment of the InN/p-Si interface and a change in the interface dipole by 0.06 eV was observed for InN/p-Si interface.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In0.2Ga0.8N layers were directly grown on Si(111) substrate by plasma-assisted molecular beam epitaxy (PAMBE). Structural characteristics of the as-grown InGaN epilayers were evaluated high resolution X-ray diffraction and composition of InGaN was estimated from photoluminescence spectra using the standard Vegard's law. High-resolution X-ray photoemission spectroscopy measurements were used to determine the band offset of wurtzite-In0.2Ga0.8N/Si(111) heterojunctions. The valence band of InGaN is found to be 2.08 +/- 0.04 eV below that of Si. The conduction band offset (CBO) of InGaN/Si heterojunction is found similar to 0.74 eV and a type-II heterojunction. (C) 2012 The Japan Society of Applied Physics

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hexagonal Ge3N4 layer was prepared on Ge surface by in situ direct atomic source nitridation and it is promising buffer layer to grow GaN on Ge (111). The valence band offset (VBO) of GaN/Ge3N4/Ge heterojunctions is determined by X-ray photoemission spectroscopy. The valence band (VB) of Ge3N4 is found to be 0.38?+/-?0.04?eV above the GaN valance band and 1.14?+/-?0.04?eV below the Ge. The GaN/Ge3N4 and Ge3N4/Ge are found type-II and type-I heterojunctions, respectively. The exact measurements of the VBO and conduction band offset (CBO) are important for use of GaN/Ge3N4/Ge (111) heterosystems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ultra thin films of pure beta-Si3N4 (0001) were grown on Si (111) surface by exposing the surface to radio- frequency nitrogen plasma with a high content of nitrogen atoms. Using beta-Si3N4 layer as a buffer layer, GaN epilayers were grown on Si (111) substrate by plasma-assisted molecular beam epitaxy. The valence band offset (VBO) of GaN/beta-Si3N4/ Si heterojunctions is determined by X-ray photoemission spectroscopy. The VBO at the beta-Si3N4 /Si interface was determined by valence-band photoelectron spectra to be 1.84 eV. The valence band of GaN is found to be 0.41 +/- 0.05 eV below that of beta-Si3N4 and a type-II heterojunction. The conduction band offset was deduced to be similar to 2.36 eV, and a change of the interface dipole of 1.29 eV was observed for GaN/ beta-Si3N4 interface formation. (c) 2011 Elsevier B.V. All rights reserved.