148 resultados para Spatially
Resumo:
We present a generalization of the finite volume evolution Galerkin scheme [M. Lukacova-Medvid'ova,J. Saibertov'a, G. Warnecke, Finite volume evolution Galerkin methods for nonlinear hyperbolic systems, J. Comp. Phys. (2002) 183 533-562; M. Luacova-Medvid'ova, K.W. Morton, G. Warnecke, Finite volume evolution Galerkin (FVEG) methods for hyperbolic problems, SIAM J. Sci. Comput. (2004) 26 1-30] for hyperbolic systems with spatially varying flux functions. Our goal is to develop a genuinely multi-dimensional numerical scheme for wave propagation problems in a heterogeneous media. We illustrate our methodology for acoustic waves in a heterogeneous medium but the results can be generalized to more complex systems. The finite volume evolution Galerkin (FVEG) method is a predictor-corrector method combining the finite volume corrector step with the evolutionary predictor step. In order to evolve fluxes along the cell interfaces we use multi-dimensional approximate evolution operator. The latter is constructed using the theory of bicharacteristics under the assumption of spatially dependent wave speeds. To approximate heterogeneous medium a staggered grid approach is used. Several numerical experiments for wave propagation with continuous as well as discontinuous wave speeds confirm the robustness and reliability of the new FVEG scheme.
Resumo:
Seepage through a sand bed affects the channel hydrodynamics, which in turn alters channel stability. Thus, the effect of seepage on its hydrodynamic parameters needs to be ascertained. The present work analyses spatially varied flow of a sand-bed channel subjected to seepage in the downward direction through a sand bed. Numerically calculated flow profiles affected by seepage have been verified using experimental observations. The present work also analyses the friction slope, velocity and bed shear stress variations along the channel for both seepage and no-seepage conditions. It was found that the downward seepage-induced channel flow has larger friction slope and bed shear stress than that of no-seepage.
Resumo:
A detailed characterization of interference power statistics in CDMA systems is of considerable practical and theoretical interest. Such a characterization for uplink inter-cell interference has been difficult because of transmit power control, randomness in the number of interfering mobile stations, and randomness in their locations. We develop a new method to model the uplink inter-cell interference power as a lognormal distribution, and show that it is an order of magnitude more accurate than the conventional Gaussian approximation even when the average number of mobile stations per cell is relatively large and even outperforms the moment-matched lognormal approximation considered in the literature. The proposed method determines the lognormal parameters by matching its moment generating function with a new approximation of the moment generating function for the inter-cell interference. The method is tractable and exploits the elegant spatial Poisson process theory. Using several numerical examples, the accuracy of the proposed method in modeling the probability distribution of inter-cell interference is verified for both small and large values of interference.
Resumo:
We report results from a first principles calculation of spatially dependent correlation functions around a magnetic impurity in metals described by the nondegenerate Anderson model. Our computations are based on a combination of perturbative scaling theory and numerical renormalization group methods. Results for the conduction election charge density around the impurity and correlation functions involving the conduction electron and impurity charge and spin densities will be presented. The behavior in various regimes including the mixed valent regime will be explored.
Resumo:
The nuclear Overhauser effect equations are solved analytically for a homonuclear group of spins whose sites are periodically arranged, including the special cases where the spins lie at the vertices of a regular polygon and on a one-dimensional lattice. t is shown that, for long correlation times, the equations governing magnetization transfer resemble a diffusion equation. Furthermore the deviation from exact diffusion is quantitatively related to the molecular tumbling correlation time. Equations are derived for the range of magnetization travel subsequent to the perturbation of a single spin in a lattice for both the case of strictly dipolar relaxation and the more general situation where additional T1 mechanisms may be active. The theory given places no restrictions on the delay (or mixing) times, and it includes all the spins in the system. Simulations are presented to confirm the theory.
Resumo:
We present the details of a formalism for calculating spatially varying zero-frequency response functions and equal-time correlation functions in models of magnetic and mixed-valence impurities of metals. The method is based on a combination of perturbative, thermodynamic scaling theory [H. R. Krishna-murthy and C. Jayaprakash, Phys. Rev. B 30, 2806 (1984)] and a nonperturbative technique such as the Wilson renormalization group. We illustrate the formalism for the spin-1/2 Kondo problem and present results for the conduction-spin-density�impurity-spin correlation function and conduction-electron charge density near the impurity. We also discuss qualitative features that emerge from our calculations and discuss how they can be carried over to the case of realistic models for transition-metal impurities.
Resumo:
A new formulation of the stability of boundary-layer flows in pressure gradients is presented, taking into account the spatial development of the flow and utilizing a special coordinate transformation. The formulation assumes that disturbance wavelength and eigenfunction vary downstream no more rapidly than the boundary-layer thickness, and includes all terms nominally of order R(-1) in the boundary-layer Reynolds number R. In Blasius flow, the present approach is consistent with that of Bertolotti et al. (1992) to O(R(-1)) but simpler (i.e. has fewer terms), and may best be seen as providing a parametric differential equation which can be solved without having to march in space. The computed neutral boundaries depend strongly on distance from the surface, but the one corresponding to the inner maximum of the streamwise velocity perturbation happens to be close to the parallel flow (Orr-Sommerfeld) boundary. For this quantity, solutions for the Falkner-Skan flows show the effects of spatial growth to be striking only in the presence of strong adverse pressure gradients. As a rational analysis to O(R(-1)) demands inclusion of higher-order corrections on the mean flow, an illustrative calculation of one such correction, due to the displacement effect of the boundary layer, is made, and shown to have a significant destabilizing influence on the stability boundary in strong adverse pressure gradients. The effect of non-parallelism on the growth of relatively high frequencies can be significant at low Reynolds numbers, but is marginal in other cases. As an extension of the present approach, a method of dealing with non-similar flows is also presented and illustrated. However, inherent in the transformation underlying the present approach is a lower-order non-parallel theory, which is obtained by dropping all terms of nominal order R(-1) except those required for obtaining the lowest-order solution in the critical and wall layers. It is shown that a reduced Orr-Sommerfeld equation (in transformed coordinates) already contains the major effects of non-parallelism.
Resumo:
Using the two-component random phase approximation, we report the collective mode spectrum of a quasi-one-dimensional spatially separated electron-hole double-layer system characterized by rolled-up type-II band aligned quantum wells. We find two intra-subband collective excitations, which can be classified into optic and acoustic plasmon branches, and several inter-subband plasmon modes. At the long wavelength limit and up to a given wave vector, our model predicts and admits an undamped acoustic branch, which always lies in the gap between the intra-subband electron and hole continua, and an undamped optic branch residing within the gap between the inter-subband electron and hole continua, for all values of the electron-hole charge separations. This theoretical investigation suggests that the low-energy and Landau-undamped plasmon modes might exist based on quasi-one-dimensional, two-component spatially separated electron-hole plasmas, and their possibility could be experimentally examined. (C) 2013 AIP Publishing LLC.
Resumo:
In wireless sensor networks (WSNs) the communication traffic is often time and space correlated, where multiple nodes in a proximity start transmitting at the same time. Such a situation is known as spatially correlated contention. The random access methods to resolve such contention suffers from high collision rate, whereas the traditional distributed TDMA scheduling techniques primarily try to improve the network capacity by reducing the schedule length. Usually, the situation of spatially correlated contention persists only for a short duration and therefore generating an optimal or sub-optimal schedule is not very useful. On the other hand, if the algorithm takes very large time to schedule, it will not only introduce additional delay in the data transfer but also consume more energy. To efficiently handle the spatially correlated contention in WSNs, we present a distributed TDMA slot scheduling algorithm, called DTSS algorithm. The DTSS algorithm is designed with the primary objective of reducing the time required to perform scheduling, while restricting the schedule length to maximum degree of interference graph. The algorithm uses randomized TDMA channel access as the mechanism to transmit protocol messages, which bounds the message delay and therefore reduces the time required to get a feasible schedule. The DTSS algorithm supports unicast, multicast and broadcast scheduling, simultaneously without any modification in the protocol. The protocol has been simulated using Castalia simulator to evaluate the run time performance. Simulation results show that our protocol is able to considerably reduce the time required to schedule.
Resumo:
An important question in kernel regression is one of estimating the order and bandwidth parameters from available noisy data. We propose to solve the problem within a risk estimation framework. Considering an independent and identically distributed (i.i.d.) Gaussian observations model, we use Stein's unbiased risk estimator (SURE) to estimate a weighted mean-square error (MSE) risk, and optimize it with respect to the order and bandwidth parameters. The two parameters are thus spatially adapted in such a manner that noise smoothing and fine structure preservation are simultaneously achieved. On the application side, we consider the problem of image restoration from uniform/non-uniform data, and show that the SURE approach to spatially adaptive kernel regression results in better quality estimation compared with its spatially non-adaptive counterparts. The denoising results obtained are comparable to those obtained using other state-of-the-art techniques, and in some scenarios, superior.
Resumo:
Fractal dimension based damage detection method is investigated for a composite plate with random material properties. Composite material shows spatially varying random material properties because of complex manufacturing processes. Matrix cracks are considered as damage in the composite plate. Such cracks are often seen as the initial damage mechanism in composites under fatigue loading and also occur due to low velocity impact. Static deflection of the cantilevered composite plate with uniform loading is calculated using the finite element method. Damage detection is carried out based on sliding window fractal dimension operator using the static deflection. Two dimensional homogeneous Gaussian random field is generated using Karhunen-Loeve (KL) expansion to represent the spatial variation of composite material property. The robustness of fractal dimension based damage detection method is demonstrated considering the composite material properties as a two dimensional random field.
Resumo:
Fractal dimension based damage detection method is studied for a composite structure with random material properties. A composite plate with localized matrix crack is considered. Matrix cracks are often seen as the initial damage mechanism in composites. Fractal dimension based method is applied to the static deformation curve of the structure to detect localized damage. Static deflection of a cantilevered composite plate under uniform loading is calculated using the finite element method. Composite material shows spatially varying random material properties because of complex manufacturing processes. Spatial variation of material property is represented as a two dimensional homogeneous Gaussian random field. Karhunen-Loeve (KL) expansion is used to generate a random field. The robustness of fractal dimension based damage detection methods is studied considering the composite plate with spatial variation in material properties.
Resumo:
In WSNs the communication traffic is often time and space correlated, where multiple nodes in a proximity start transmitting simultaneously. Such a situation is known as spatially correlated contention. The random access method to resolve such contention suffers from high collision rate, whereas the traditional distributed TDMA scheduling techniques primarily try to improve the network capacity by reducing the schedule length. Usually, the situation of spatially correlated contention persists only for a short duration, and therefore generating an optimal or suboptimal schedule is not very useful. Additionally, if an algorithm takes very long time to schedule, it will not only introduce additional delay in the data transfer but also consume more energy. In this paper, we present a distributed TDMA slot scheduling (DTSS) algorithm, which considerably reduces the time required to perform scheduling, while restricting the schedule length to the maximum degree of interference graph. The DTSS algorithm supports unicast, multicast, and broadcast scheduling, simultaneously without any modification in the protocol. We have analyzed the protocol for average case performance and also simulated it using Castalia simulator to evaluate its runtime performance. Both analytical and simulation results show that our protocol is able to considerably reduce the time required for scheduling.
Resumo:
The aim of this study is to propose a method to assess the long-term chemical weathering mass balance for a regolith developed on a heterogeneous silicate substratum at the small experimental watershed scale by adopting a combined approach of geophysics, geochemistry and mineralogy. We initiated in 2003 a study of the steep climatic gradient and associated geomorphologic features of the edge of the rifted continental passive margin of the Karnataka Plateau, Peninsular India. In the transition sub-humid zone of this climatic gradient we have studied the pristine forested small watershed of Mule Hole (4.3 km(2)) mainly developed on gneissic substratum. Mineralogical, geochemical and geophysical investigations were carried out (i) in characteristic red soil profiles and (ii) in boreholes up to 60 m deep in order to take into account the effect of the weathering mantle roots. In addition, 12 Electrical Resistivity Tomography profiles (ERT), with an investigation depth of 30 m, were generated at the watershed scale to spatially characterize the information gathered in boreholes and soil profiles. The location of the ERT profiles is based on a previous electromagnetic survey, with an investigation depth of about 6 m. The soil cover thickness was inferred from the electromagnetic survey combined with a geological/pedological survey. Taking into account the parent rock heterogeneity, the degree of weathering of each of the regolith samples has been defined using both the mineralogical composition and the geochemical indices (Loss on Ignition, Weathering Index of Parker, Chemical Index of Alteration). Comparing these indices with electrical resistivity logs, it has been found that a value of 400 Ohm m delineates clearly the parent rocks and the weathered materials, Then the 12 inverted ERT profiles were constrained with this value after verifying the uncertainty due to the inversion procedure. Synthetic models based on the field data were used for this purpose. The estimated average regolith thickness at the watershed scale is 17.2 m, including 15.2 m of saprolite and 2 m of soil cover. Finally, using these estimations of the thicknesses, the long-term mass balance is calculated for the average gneiss-derived saprolite and red soil. In the saprolite, the open-system mass-transport function T indicates that all the major elements except Ca are depleted. The chlorite and biotite crystals, the chief sources for Mg (95%), Fe (84%), Mn (86%) and K (57%, biotite only), are the first to undergo weathering and the oligoclase crystals are relatively intact within the saprolite with a loss of only 18%. The Ca accumulation can be attributed to the precipitation of CaCO3 from the percolating solution due to the current and/or the paleoclimatic conditions. Overall, the most important losses occur for Si, Mg and Na with -286 x 10(6) mol/ha (62% of the total mass loss), -67 x 10(6) mol/ha (15% of the total mass loss) and -39 x 10(6) mol/ha (9% of the total mass loss), respectively. Al, Fe and K account for 7%, 4% and 3% of the total mass loss, respectively. In the red soil profiles, the open-system mass-transport functions point out that all major elements except Mn are depleted. Most of the oligoclase crystals have broken down with a loss of 90%. The most important losses occur for Si, Na and Mg with -55 x 10(6) mol/ha (47% of the total mass loss), -22 x 10(6) mol/ha (19% of the total mass loss) and -16 x 10(6) mol/ha (14% of the total mass loss), respectively. Ca, Al, K and Fe account for 8%, 6%, 4% and 2% of the total mass loss, respectively. Overall these findings confirm the immaturity of the saprolite at the watershed scale. The soil profiles are more evolved than saprolite but still contain primary minerals that can further undergo weathering and hence consume atmospheric CO2.