262 resultados para PD(II) COMPLEXES
Resumo:
Four novel mononuclear Pd(II) complexes have been synthesized with the biologically active Schiff base ligands (L-1-L-4) derived from 3-amino-2-methyl-4(3H)-quinazolinone. The structure of the complexes has been proposed by elemental analysis, molar conductance, IR, H-1 NMR, mass, UV-Vis spectrometric and thermal studies. The investigation of interaction of the complexes with calf thymus DNA (CT-DNA) has been performed with absorption and fluorescence spectroscopic studies. The nuclease activity was done using pUC19 supercoiled DNA by gel-electrophoresis. All the ligands and their Pd(II) complexes have also been screened for their antibacterial activity by discolor diffusion technique. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
New complexes, [Ni(HL)(PPh3)]Cl (1), [Pd(L)(PPh3)](2), and [Pd(L)(AsPh3)](3), were synthesized from the reactions of 4-chloro-5-methyl-salicylaldehyde thiosemicarbazone [H2L] with [NiCl2(PPh3)(2)], [PdCl2(PPh3)(2)] and [PdCl2(AsPh3)(2)]. They were characterized by IR, electronic, H-1-NMR spectral data. Further, the structures of the complexes have been determined by single crystal X-ray diffraction. While the thiosemicarbazone coordinated as binegative tridentate (ONS) in complexes 2 and 3, it is coordinated as mono negative tridentate (ONS) in 1. The interactions of the new complexes with calf thymus DNA was examined by absorption and emission spectra, and viscosity measurements. Moreover, the antioxidant properties of the new complexes have also been tested against DPPH radical in which complex 1 exhibited better activity than that of the other two complexes 2 and 3. The in vitro cytotoxicity of complexes 1-3 against A549 and HepG2 cell lines was assayed, and the new complexes exhibited higher cytotoxic activity with lower IC50 values indicating their efficiency in killing the cancer cells even at very low concentrations.
Resumo:
Nickel(I1) and palladium(I1) complexes of the types Ni(R-IAI)(IAI'), Pd(IAI)(IAI'), and Pd(R-IAI), , where IAI and IAI' represent isonitrosoacetylacetone imine and R-IAI represents its Aralkyl derivative, have been prepared. The molar conductance, molecular weight, magnetic moment, and ir, pmr, and electronic spectra of these com- plexes have been studied. It is suggested that the isonitroso group of R-IAI coordinates through the nitrogen and that of IAI' thiough the oxygen in Ni(R-IAI)(IAI'). In Pd(R-IAI), the isonitroso groups of both ligands coordinate through nitrogen while Pd(IAI)(IAI') has a structure similar to that of Ni(R-IAI)(IAI'). The amine- exchange reactions of nickel(I1) and palladium(I1) complexes are discussed and compared on the basis of their structures.
Resumo:
Methods for the preparation of palladium(II) complexes of the type Pd(R-IAI)(IAI'), where IAI' is the anion of isonitrosoacetylacetoneimine and R-IAI, its N-alkyl or N-aryl derivative, are given.
Resumo:
Sodium ethylselenolates with functional groups X (where X = -OH, -COOH, -COOMe and -COOEt) at beta-carbon were prepared in situ by reductive cleavage of corresponding diselenide with NaBH4 either in methanol or aqueous ammonia. Treatment of these selenolates with [M2Cl2(mu-Cl)(2)(PR'(3))(2)] (M = Pd or Pt; PR'(3) = PMePh2, PnPr(3)) in different stoichiometry yielded various bi- and tri-nuclear complexes. The homoleptic hexanuclear complexes [Pd(mu-SeCH2CH2X)(2)](6) (X = OH, COOH, COOEt), were obtained by reacting Na2PdCl4 with NaSeCH2CH2X. All these complexes have been fully characterized. Molecular structures of ethylselenolates containing hydroxyl and carboxylic acid groups revealed solid state associated structures through inter-molecular hydrogen bond interactions. Trinuclear complex, [Pd3Cl2(mu-SeCH2CH2COOH)(4)(PnPr(3))(2)] (3a), was disposed in a boat form unlike chair conformation observed for the corresponding methylester complex. The effect of beta-functionality in ethylselenolate ligands towards reactivity, structures and thermal properties of palladium and platinum complexes has been extensively Studied.
Resumo:
Reactions of [PdIVB-(AI)2]++ [PdIICl4]-- (i) B-(AI)2 = dianion of N,N'-ethylene-/i-propylene-/n-propylene-bis(acetyl-acetoneimine) with some π-acceptor ligands, aliphatic primary amines and nitrosating reagents have been investigated. In all these reactions except nitrosation, 1:1 adducts having the formula, [PdIVB-(AI)2.X] [PdIICl4] [X = triphenylphosphine (TPP), triphenylarsine (TPA), pyridine (Py), methylamine (CH3NH2) or ethylamine (C2H5NH2)] are obtained. The formation of these complexes is associated with a bond isomerization - from Pd-Cxo-π -allylic bond prevailing in [PdIVB-(AI)2]2+ to PdIV-O bonding.Reaction of (i) with nitrosating reagents reduces PdIV to PdII and subsequently transform the γ-CH group, into an ambidentate isonitroso group (°C = NOH). The latter enters into coordination with PdII by dislodging the already coordinated carbonyl group. Further, selective nitrosation (mono- and dinitrosation) has been carried out by controlling the amount of the nitrosating reagent and the reaction time. The complexes have been characterized by elemental analyses, electrical conductivity, magnetic susceptibility and ir spectral data.
Resumo:
The reactions of [MCl2(cod)](M = Pd or Pt, cod = cycloocta-1,5-diene) with RN[P(OPh)2]2[R = Me (L1) or Ph (L2)] afford the chelate complexes [MCl2L1] and [MCl2L2]. The dinuclear palladium(O) complex, [Pd2L13] has been synthesized by starting from [Pd2(dba)3](dba = dibenzylideneacetone). Redox condensation of [Pd2(dba)3] and [PdCl2(PhCN)2] in the presence of the diphosphazane ligands gives the dinuclear palladium(I) complexes [Pd2Cl2L12] and [Pd2Cl2L22]. The structures of the complexes have been deduced from 1H and 31P NMR spectroscopic data. Single-crystal X-ray diffraction studies confirm the structures of [Pd2L13] and [Pd2Cl2L22].
Resumo:
Design and synthesis of three novel 2 + 2] self-assembled molecular rectangles 1-3 via coordination driven self-assembly of predesigned Pd(II) ligands is reported. 1,8-Diethynylanthracene was assembled with trans-Pd(PEt3)(2)Cl-2 in the presence of CuCl catalyst to yield a neutral rectangle 1 via Pd-C bond formation. Complex 1 represents the first example of a neutral molecular rectangle obtained via C-Pd coordination driven self-assembly. A new Pd-2(II) organometallic building block with 180 degrees bite-angle 1,4-bistrans-(ethynyl)Pd(PEt3)(2)(NO3)] benzene (M-2) containing ethynyl functionality was synthesized in reasonable yield by employing Sonagashira coupling reaction. Self-assembly of M-2 with two organic clip-type donors (L-2-L-3) afforded 2 + 2] self-assembled molecular rectangles 2 and 3, respectively L-2 = 1,8-bis(4-pyridylethynyl) anthracene; L-3 = 1,3-bis(3-pyridyl) isophthalamide]. The macrocycles 1-3 were fully characterized by multinuclear NMR and ESI-MS spectroscopic techniques, and in case of 1 the structure was unambiguously determined by single crystal X-ray diffraction analysis. Incorporation of Pd-ethynyl bonds helped to make the assemblies p-electron rich and fluorescent in nature. Complexes 1-2 showed quenching of fluorescence intensity in solution in presence of nitroaromatics, which are the chemical signatures of many commercially available explosives.
Resumo:
Ferrocene-conjugated ternary copper(II) complexes [Cu(L)(B)](ClO4)(2), where L is FcCH(2)N(CH2Py)(2) (Fc = (eta(5)-C5H4)Fe-II(eta(5)-C5H5)) and B is a phenanthroline base, viz., 2,2'-bipyridine (bpy, 1), 1, 10-phenanthroline (phen, 2), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, 3), and dipyrido[3,2-a:2',3'-c]phenazine (dppz, 4), have been synthesized and characterized by various spectroscopic and analytical techniques. The bpy complex 1, as its hexafluorophosphate salt, has been structurally characterized by X-ray crystallography. The molecular structure shows the copper(II) center having an essentially square-pyramidal coordination geometry in which L with a pendant ferrocenyl (Fc) moiety and bpy show respective tridentate and bidentate modes of binding to the metal center. The complexes are redox active, showing a reversible cyclic voltammetric response of the Fc(+)-Fc couple near 0.5 V vs SCE and a quasi-reversible Cu(II)-Cu(I) couple near 0.0 V. Complexes 2-4 show binding affinity to calf thymus (CT) DNA, giving binding constant (K-b) values in the range of 4.2 x 10(4) to 2.5 x 10(5) M-1. Thermal denaturation and viscometric titration data suggest groove binding and/or a partial intercalative mode of binding of the complexes to CT DNA. The complexes show good binding propensity to the bovine serum albumin (BSA) protein, giving K-BSA values of similar to 10(4) M-1 for the bpy and phen complexes and similar to 10(5) M-1 for the dpq and dppz complexes. Complexes 2-4 exhibit efficient chemical nuclease activity in the presence of 3-mercapto-propionic acid (MPA) as a reducing agent or hydrogen peroxide (H2O2) as an oxidizing agent. Mechanistic studies reveal formation of hydroxyl radicals as the reactive species. The dpq and dppz complexes are active in cleaving supercoiled (SC) pUC19 DNA on photoexposure to visible light of different wavelengths including red light using an argon-krypton mixed gas ion laser. Mechanistic investigations using various inhibitors reveal the fort-nation of hydroxyl radicals in the DNA photocleavage reactions. The dppz complex 4, which shows efficient photoioduced BSA cleavage activity, is a potent multifunctional model nuclease and protease in the chemistry of photodynamic therapy (PDT) of cancer.
Resumo:
Ternary L-glutamine (L-gln) copper(II) complexes [Cu(L-gln)(B)(H2O)](X) (B = 2,2'-bipyridine (bpy), X = 0.5SO(4)(2-), 1; B = 1,10-phenanthroline (phen), X = ClO4-, 2) and [Cu(L-gln)(dpq)(ClO4)] (3) (dpq, dipyridoquinoxaline) are prepared and characterized by physicochemical methods. The DNA binding and cleavage activity of the complexes have been studied. Complexes 1-3 are structurally characterized by X-ray crystallography. The complexes show distorted square pyramidal (4+1) CuN3O2 coordination geometry in which the N,O-donor amino acid and the N, N-donor heterocyclic base bind at the basal plane with a H2O or perchlorate as the axial ligand. The crystal structures of the complexes exhibit chemically significant hydrogen bonding interactions besides showing coordination polymer formation. The complexes display a d-d electronic band in the range of 610-630 nm in aqueous-dimethylformamide (DMF) solution (9:1 v/v). The quasireversible cyclic voltammetric response observed near -0.1 V versus SCE in DMF-TBAP is assignable to the Cu(II)/Cu(I) couple. The binding affinity of the complexes to calf thymus (CT) DNA follows the order: 3 (dpq) > 2 (phen) >> 1 (bpy). Complexes 2 and 3 show DNA cleavage activity in dark in the presence of 3-mercaptopropionic acid (MPA) as a reducing agent via a mechanistic pathway forming hydroxyl radical as the reactive species. The dpq complex 3 shows efficient photoinduced DNA cleavage activity on irradiation with a monochromatic UV light of 365 nm in absence of any external reagent. The cleavage efficiency of the DNA minor groove binding complexes follows the order:3 > 2 >> 1. The dpq complex exhibits photocleavage of DNA on irradiation with visible light of 647.1 nm. Mechanistic data on the photo-induced DNA cleavage reactions reveal the involvement of singlet oxygen (O-1(2)) as the reactive species in a type-II pathway. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The self-assembly reaction of a cis-blocked 90° square planar metal acceptor with a symmetrical linear flexible linker is expected to yield a [4 + 4] self-assembled square, a [3 + 3] assembled triangle, or a mixture of these.However, if the ligand is a nonsymmetrical ambidentate, it is expected to form a complex mixture comprising several linkage isomeric squares and triangles as a result of different connectivities of the ambidentate linker. We report instead that the reaction of a 90° acceptor cis-(dppf)Pd(OTf)2 [where dppf ) 1,1′-bis(diphenylphosphino)- ferrocene] with an equimolar amount of the ambidentate unsymmetrical ligand Na-isonicotinate unexpectedly yields a mixture of symmetrical triangles and squares in the solution. An analogous reaction using cis-(tmen)Pd(NO3)2 instead of cis-(dppf)Pd(OTf)2 also produced a mixture of symmetrical triangles and squares in the solution. In both cases the square was isolated as the sole product in the solid state, which was characterized by a single crystal structure analysis. The equilibrium between the triangle and the square in the solution is governed by the enthalpic and entropic contributions. The former parameter favors the formation of the square due to less strain in the structure whereas the latter one favors the formation of triangles due to the formation of more triangles from the same number of starting linkers. The effects of temperature and concentration on the equilibria have been studied by NMR techniques. This represents the first report on the study of square-triangle equilibria obtained using a nonsymmetric ambidentate linker. Detail NMR spectroscopy along with the ESI-mass spectrometry unambiguously identified the components in the mixture while the X-ray structure analysis determined the solid-state structure.
Resumo:
Copper(II) complexes [Cu(L-arg)(2)](NO3)(2) (1) and [Cu(L-arg)(B)Cl]Cl (2-5), where B is a heterocyclic base, namely, 2,2'-bipyridine (bpy, 2), 1,10-phenanthroline (phen, 3), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, 4), and dipyrido[3,2-a:2',3'-c)phenazine (dppz, 5), are prepared and their DNA binding and photoinduced DNA cleavage activity studied. Ternary complex 3, structurally characterized using X-ray crystallography, shows a square-pyramidal (4 + 1) coordination geometry in which the N,O-donor L-arginine and N,N-donor 1,10-phenanthroline form the basal plane with one chloride at the elongated axial site. The complex has a pendant cationic guanidinium moiety. The one-electron paramagnetic complexes display a metal-centered d-d band in the range of 590-690 nm in aqueous DMF They show quasireversible cyclic voltammetric response due to the Cu(II)/Cu(I) couple in the range of -0.1 to -0.3 V versus a saturated calomel electrode in a DMF-Tris HCl buffer (pH 7.2). The DNA binding propensity of the complexes is studied using various techniques. Copper(II) bis-arginate 1 mimics the minor groove binder netropsin by showing preferential binding to the AT-rich sequence of double-strand (ds) DNA. DNA binding study using calf thymus DNA gives an order: 5 (L-arg-dppz) >= 1 (biS-L-arg) > 4 (L-arg-dpq) > 3 (L-arg-phen) >> 2 (L-arg-bpy). Molecular docking calculations reveal that the complexes bind through extensive hydrogen bonding and electrostatic interactions with ds-DNA. The complexes cleave supercoiled pUC19 DNA in the presence of 3-mercaptopropionic acid as a reducing agent forming hydroxyl ((OH)-O-center dot) radicals. The complexes show oxidative photoinduced DNA cleavage activity in UV-A light of 365 nm and red light of 647.1 nm (Ar-Kr mixed-gas-ion laser) in a metal-assisted photoexcitation process forming singlet oxygen (O-1(2)) species in a type-II pathway. All of the complexes, barring complex 2, show efficient DNA photocleavage activity. Complexes 4 and 5 exhibit significant double-strand breaks of DNA in red light of 647.1 nm due to the presence of two photosensitizers, namely, L-arginine and dpq or dppz in the molecules.
Resumo:
Ferrocene-appended ternary copper(H) complexes of phenanthroline bases having CuN3OS coordination with an axial Cu-S bond derived from L-methionine reduced Schiff base shows red light induced oxidative DNA cleavage activity following a hydroxyl radical pathway. The dipyridophenazine complex, in addition, displays photoinduced oxidative cleavage of bovine serum albumin protein in UV-A light.
Resumo:
Coordination compounds of the polypyridines, 2,2 ' -bipyridine (bipy) and 1,10-penanthroline (phen) have offered renewed interest on account of their manifold applications and from the point of view of understanding their structure-reactivity relationships.1 Iron(II) reacts with them to form tris-complexes possessing spin-paired ground states. Cyanide ion greatly enhances the rate of displacement of bipy or phen to form the Schilt class of compounds. Fe(bipy)2(CN)2 and Fe(phen)2(CN)2. They display varying colours in solution depending upon the nature of the solvent and react reversibly with acids to form diprotonated species.2 Magnetic circular dichroism studies have been reported to describe their lowest electronic excitation.