265 resultados para Na doping


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Barium lanthanum bismuth titanate (Ba1−(3/2)xLaxBi4Ti4O15, x = 0–0.4) ceramics were fabricated using the powders synthesized via the solid-state reaction route. X-ray powder diffraction analysis confirmed the above compositions to be monophasic and belonged to the m = 4 member of the Aurivillius family of oxides. The effect of the partial presence of La3+ on Ba2+ sites on the microstructure, dielectric and relaxor behaviour of BaBi4Ti4O15 (BBT) ceramics was investigated. For the compositions pertaining to x ≤ 0.1, the dielectric constant at both room temperature and in the vicinity of the temperature of the dielectric maximum (Tm) of the parent phase (BBT) increased significantly with an increase in x while Tm remained almost constant. Tm shifted towards lower temperatures accompanied by a decrease in the magnitude of the dielectric maximum (εm) with an increase in the lanthanum content (0.1 < x ≤ 0.4). The dielectric relaxation was modelled using the Vogel–Fulcher relation and a decrease in the activation energy for frequency dispersion with increasing x was observed. The frequency dispersion of Tm was found to decrease with an increase in lanthanum doping, and for compositions corresponding to x ≥ 0.3, Tm was frequency independent. Well-developed P(polarization)–E(electric field) hysteresis loops were observed at 150 °C for all the samples and the remanent polarization (2Pr) was improved from 6.3 µC cm−2 for pure BBT to 13.4 µC cm−2 for Ba0.7La0.2Bi4Ti4O15 ceramics. Dc conductivities and associated activation energies were evaluated using impedance spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of a charge buffer layer in the superconductivity of high-T-c materials is best studied by cationic substitutions. In this work, the chain copper in YBCO single crystals is substituted by Co3+ ion and consequent effect on superconducting transition temperature (T-c) studied. The T-c is measured using non-resonant Microwave Absorption technique, which is a highly sensitive and contactless method. It is seen that T-c of as-grown crystals is considerably enhanced by cobalt doping in low concentration regime. In contrast, higher T-c is achieved in undoped crystals only after extended oxygen anneal. When dopant concentration increases beyond an optimal value, T-c decreases and the system does not show superconductivity when cobalt content is high (x > 0.5 in YBa2Cu3-xCOxO7+/-delta). This behaviour consequent to cobalt substitution is discussed with reference to the apical oxygen model. Optimal cobalt doping can be thought of as an alternative to extended oxygen anneal in as-grown crystals of YBCO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract is not available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The resistivity of selenium-doped n-InP single crystal layers grown by liquid-phase epitaxy with electron concentrations varying from 6.7 x 10$^18$ to 1.8 x 10$^20$ cm$^{-3}$ has been measured as a function of hydrostatic pressure up to 10 GPa. Semiconductor-metal transitions were observed in each case with a change in resistivity by two to three orders of magnitude. The transition pressure p$_c$ decreased monotonically from 7.24 to 5.90 GPa with increasing doping concentration n according to the relation $p_c = p_o [1 - k(n/n_m)^a]$, where n$_m$ is the concentration (per cubic centimetre) of phosphorus donor sites in InP atoms, p$_o$ is the transition pressure at low doping concentrations, k is a constant and $\alpha$ is an exponent found experimentally to be 0.637. The decrease in p$_c$ is considered to be due to increasing internal stress developed at high concentrations of ionized donors. The high-pressure metallic phase had a resistivity (2.02-6.47) x 10$^{-7}$ $\Omega$ cm, with a positive temperature coefficient dependent on doping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New glasses of 16.66SrO–16.66[(1 − x)Bi2O3–xSm2O3]–16.66Nb2O5–50Li2B4O7 (0 ≤ x ≤ 0.5, in molar ratio), i.e., the pseudo-binary Sm2O3-doped SrBi2Nb2O9–Li2B4O7 glass system, giving the crystallization of Sm3+-doped SrBi2Nb2O9 nanocrystals are developed. It is found that the thermal stability of the glasses against the crystallization and the optical band gap energy increases with increasing Sm2O3 content. The formation of fluorite-type Sm3+-doped SrBi2Nb2O9 nanocrystals (diameters: 13–37 nm) with a cubic structure is confirmed in the crystallized (530 °C, 3 h) samples from X-ray powder diffraction analyses, Raman scattering spectrum measurements, and transmission electron microscope observations. The effect of Sm3+-doping on the microstructure, Raman scattering peak positions, and dielectric properties of composites comprising of fluorite-type SrBi2Nb2O9 nanocrystals and the Li2B4O7 glassy phase is clarified. It is found that fluorite-type SrBi2Nb2O9 nanocrystals transform to stable perovskite-type SrBi2Nb2O9 crystals with an orthorhombic structure by heat treatments at around 630 °C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Doping graphene with electron donating or accepting molecules is an interesting approach to introduce carriers into it, analogous to electrochemical doping accomplished in graphene when used in a field-effect transistor. Here, we use first-principles density-functional theory to determine changes in the electronic-structure and vibrational properties of graphene that arise from the adsorption of aromatic molecules such as aniline and nitrobenzene. Identifying the roles of various mechanisms of chemical interaction between graphene and a molecule, we bring out the contrast between electrochemical and molecular doping of graphene. Our estimates of various contributions to shifts in the Raman-active modes of graphene with molecular doping are fundamental to the possible use of Raman spectroscopy in (a) characterization of the nature and concentration of carriers in graphene with molecular doping, and (b) graphene-based chemical sensors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bulk Ge15Te85-xInx (1 <= x <= 11) series of glasses have been found to exhibit a threshold switching behaviour for an input current of 2 mA. An initial decrease is seen in the switching voltages (V-T) with the addition of indium, which is due to the higher metallicity of indium. An increase is seen in V-T above 3 at.% of indium, which proceeds until 8 at.%, with a change in slope (lower to higher) seen around 7 at.%. Beyond x = 8, a reversal in trend is exhibited in the variation of V-T, with a well-defined minimum around x = 9 at.%. Based on the composition dependence of V-T, it is proposed that Ge15Te85-xInx glasses exhibit an extended rigidity percolation threshold. The composition, x = 3, at which the V-T starts to increase and the composition, x = 7, at which a slope change is exhibited correspond to the onset and completion, respectively, of the extended stiffness transition. Thermal studies and photoconductivity e85-xInx glasses. In addition, the minimum seen in V-T at x = 9 is associated with the chemical threshold (CT) of this glassy system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We determine the electronic properties and dielectric response of zirconia (ZrO2) with oxygen vacancies (O vacancies) and Ti doping using first-principles density functional theory calculations based on pseudopotentials and a plane wave basis. We find significantly enhanced static dielectric response in zirconia with Ti doping and introduction of oxygen vacancies. Softening of phonon modes are responsible for the enhanced dielectric response of doped samples compared to pure zirconia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detailed investigations into the dielectric dispersion phenomenon in the giant dielectric constant material CaCu3Ti4O12 (CCTO) around room temperature revealed the existence of two successive dielectric relaxations. In the temperature domain, a new dielectric relaxation was clearly observed around 250K, in addition to the well-investigated dielectric relaxation close to 100K. The effect of sintering and doping (La3+) on the strength of these dielectric relaxations were studied in detail. The sintering temperature as well as its duration was found to have tremendous influence on the dielectric relaxation that was encountered around 250 K. This Maxwell-Wagner (M-W) type of relaxation was found to be originating from the surface layer containing the Cu-rich phase, which was ascribed to the difference in the oxygen content between the surface and the interior of the sample. Interestingly, this particular additional relaxation was not observed in La2/3Cu3Ti4O12, a low dielectric constant member of the CCTO family, in which the segregation of Cu-rich phase on the surface was absent. Indeed the correlation between the new relaxation and the presence of Cu-rich phase in CCTO ceramics was further corroborated by the absence of the same after removing the top and bottom layers. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A recent, major, puzzle in the core-level photoemission spectra of doped manganites is the observation of a 1–2 eV wide shoulder with intensity varying with temperature T as the square of the magnetization over a T scale of order 200 K, an order of magnitude less than electronic energies. This is addressed and resolved here, by extending a recently proposed two-fluid polaron–mobile electron model for these systems to include core-hole effects. The position of the shoulder is found to be determined by Coulomb and Jahn-Teller energies, while its spectral weight is determined by the mobile electron energetics which is strongly T and doping dependent, due to annealed disorder scattering from the polarons and the t2g core spins. Our theory accounts quantitatively for the observed T dependence of the difference spectra, and furthermore, explains the observed correspondence between spectral changes due to increasing doping and decreasing T.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Only a small amount (<= 3.5 mol%) of Ge can be doped in Ga2O3, Ga1.4In0.6O3 and In2O3 by means of solid state reactions at 1400 degrees C. All these samples are optically transparent in the visible range, but Ge-doped Ga2O3 and Ga1.4In0.6O3 are insulating. Only Ge-doped In2O3 exhibits a significant decrease in resistivity, the resistivity decreasing further on thermal quenching and H-2 reduction.The resistivity of 2.7% Ge-doped In2O3 after H-2 reduction shows a metallic behavior, and a resistivity of similar to 1 m Omega cm at room temperature, comparable to that of Sn-doped In2O3. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By employing X-ray photoelectron spectroscopy (XPS), we have been able to establish the occurrence of charge-transfer doping in few-layer graphene covered with electron acceptor (TCNE) and donor (TTF) molecules. We have performed quantitative estimates of the extent of charge transfer in these complexes and elucidated the origin of unusual shifts of their Raman G-bands and explained the differences in the dependence of conductivity on n- and p-doping. The study unravels the cause of the apparent difference between the charge-transfer doping and electrochemical doping. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Following growth doping strategy and using dopant oxides nanocrystals as dopant sources, we report here two different transition-metal ions doped in a variety of group II-VI semiconductor nanocrystals. Using manganese oxide and copper oxide nanocrystals as corresponding dopant sources, intense photoluminescence emission over a wide range of wavelength has been observed for different host nanocrystals. Interestingly, this single doping strategy is successful in providing such highly emissive nanocrystals considered here, in contrast with the literature reports that would suggest synthesis strategies to be highly specific to the particular dopant, host, or both. We investigate and discuss the possible mechanism of the doping process, supporting the migration of dopant ions from dopant oxide nanocrystals to host nanocrystals as the most likely scenario.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zr doping in ceria (CeO2) results in enhanced static dielectric response compared to pure ceria. On the other hand, Ti doping in ceria keeps its dielectric constant unchanged. We use first-principles density functional theory calculations based on pseudopotentials and a plane wave basis to determine electronic properties and dielectric response of Zr/Ti-doped and oxygen-vacancy-introduced ceria. Softening of phonon modes is responsible for the enhancement in dielectric response of Zr-doped ceria compared to that of pure ceria. The ceria-zirconia mixed oxides should have potential use as high-k materials in the semiconductor industry. (c) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An expression is developed for the variation of the critical solution temperature of a binary liquid system when a third component (dopant) is added, using an extension of the regular solution theory. The model can be used for UCST, LCST and for closed loop systems and has the correct features in the limiting cases.