74 resultados para Locally Compact Spaces
Resumo:
We consider the Riemannian functional defined on the space of Riemannian metrics with unit volume on a closed smooth manifold M given by R-n/2(g) := integral(M) vertical bar R(g)vertical bar(n//2) dv(g) where R(g), dv(g) denote the Riemannian curvature and volume form corresponding to g. We show that there are locally symmetric spaces which are unstable critical points for this functional.
Resumo:
In this paper, we study approximatively τ-compact and τ-strongly Chebyshev sets, where τ is the norm or the weak topology. We show that the metric projection onto τ-strongly Chebyshev sets are norm-τ continuous. We characterize approximatively τ-compact and τ-strongly Chebyshev hyperplanes and use them to characterize factor reflexive proximinal subspaces in τ-almost locally uniformly rotund spaces. We also prove some stability results on approximatively τ-compact and τ-strongly Chebyshev subspaces.
Resumo:
We consider convolution equations of the type f * T = g, where f, g is an element of L-P (R-n) and T is a compactly supported distribution. Under natural assumptions on the zero set of the Fourier transform of T, we show that f is compactly supported, provided g is. Similar results are proved for non-compact symmetric spaces as well. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
A compact, high brightness 13.56 MHz inductively coupled plasma ion source without any axial or radial multicusp magnetic fields is designed for the production of a focused ion beam. Argon ion current of density more than 30 mA/cm(2) at 4 kV potential is extracted from this ion source and is characterized by measuring the ion energy spread and brightness. Ion energy spread is measured by a variable-focusing retarding field energy analyzer that minimizes the errors due t divergence of ion beam inside the analyzer. Brightness of the ion beam is determined from the emittance measured by a fully automated and locally developed electrostatic sweep scanner. By optimizing various ion source parameters such as RF power, gas pressure and Faraday shield, ion beams with energy spread of less than 5 eV and brightness of 7100 Am(-2)sr(-1)eV(-1) have been produced. Here, we briefly report the details of the ion source, measurement and optimization of energy spread and brightness of the ion beam. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We study the boundedness of Toeplitz operators on Segal-Bargmann spaces in various contexts. Using Gutzmer's formula as the main tool we identify symbols for which the Toeplitz operators correspond to Fourier multipliers on the underlying groups. The spaces considered include Fock spaces, Hermite and twisted Bergman spaces and Segal-Bargmann spaces associated to Riemannian symmetric spaces of compact type.
Resumo:
In the study of holomorphic maps, the term ``rigidity'' refers to certain types of results that give us very specific information about a general class of holomorphic maps owing to the geometry of their domains or target spaces. Under this theme, we begin by studying when, given two compact connected complex manifolds X and Y, a degree-one holomorphic map f :Y -> X is a biholomorphism. Given that the real manifolds underlying X and Y are diffeomorphic, we provide a condition under which f is a biholomorphism. Using this result, we deduce a rigidity result for holomorphic self-maps of the total space of a holomorphic fiber space. Lastly, we consider products X = X-1 x X-2 and Y = Y-1 x Y-2 of compact connected complex manifolds. When X-1 is a Riemann surface of genus >= 2, we show that any non-constant holomorphic map F:Y -> X is of a special form.
Resumo:
In the vector space of algebraic curvature operators we study the reaction ODE which is associated to the evolution equation of the Riemann curvature operator along the Ricci flow. More precisely, we give a partial classification of the zeros of this ODE up to suitable normalization and analyze the stability of a special class of zeros of the same. In particular, we show that the ODE is unstable near the curvature operators of the Riemannian product spaces where is an Einstein (locally) symmetric space of compact type and not a spherical space form when .
Resumo:
An accretion flow is necessarily transonic around a black hole.However, around a neutron star it may or may not be transonic, depending on the inner disk boundary conditions influenced by the neutron star. I will discuss various transonic behavior of the disk fluid in general relativistic (or pseudo general relativistic) framework. I will address that there are four types of sonic/critical point. possible to form in an accretion disk. It will be shown that how the fluid properties including location of sonic point's vary with angular momentum of the compact object which controls the overall disk dynamics and outflows.
Resumo:
The problem of decaying states and resonances is examined within the framework of scattering theory in a rigged Hilbert space formalism. The stationary free,''in,'' and ''out'' eigenvectors of formal scattering theory, which have a rigorous setting in rigged Hilbert space, are considered to be analytic functions of the energy eigenvalue. The value of these analytic functions at any point of regularity, real or complex, is an eigenvector with eigenvalue equal to the position of the point. The poles of the eigenvector families give origin to other eigenvectors of the Hamiltonian: the singularities of the ''out'' eigenvector family are the same as those of the continued S matrix, so that resonances are seen as eigenvectors of the Hamiltonian with eigenvalue equal to their location in the complex energy plane. Cauchy theorem then provides for expansions in terms of ''complete'' sets of eigenvectors with complex eigenvalues of the Hamiltonian. Applying such expansions to the survival amplitude of a decaying state, one finds that resonances give discrete contributions with purely exponential time behavior; the background is of course present, but explicitly separated. The resolvent of the Hamiltonian, restricted to the nuclear space appearing in the rigged Hilbert space, can be continued across the absolutely continuous spectrum; the singularities of the continuation are the same as those of the ''out'' eigenvectors. The free, ''in'' and ''out'' eigenvectors with complex eigenvalues and those corresponding to resonances can be approximated by physical vectors in the Hilbert space, as plane waves can. The need for having some further physical information in addition to the specification of the total Hamiltonian is apparent in the proposed framework. The formalism is applied to the Lee–Friedrichs model and to the scattering of a spinless particle by a local central potential. Journal of Mathematical Physics is copyrighted by The American Institute of Physics.
Resumo:
Let Wm,p denote the Sobolev space of functions on Image n whose distributional derivatives of order up to m lie in Lp(Image n) for 1 less-than-or-equals, slant p less-than-or-equals, slant ∞. When 1 < p < ∞, it is known that the multipliers on Wm,p are the same as those on Lp. This result is true for p = 1 only if n = 1. For, we prove that the integrable distributions of order less-than-or-equals, slant1 whose first order derivatives are also integrable of order less-than-or-equals, slant1, belong to the class of multipliers on Wm,1 and there are such distributions which are not bounded measures. These distributions are also multipliers on Lp, for 1 < p < ∞. Moreover, they form exactly the multiplier space of a certain Segal algebra. We have also proved that the multipliers on Wm,l are necessarily integrable distributions of order less-than-or-equals, slant1 or less-than-or-equals, slant2 accordingly as m is odd or even. We have obtained the multipliers from L1(Image n) into Wm,p, 1 less-than-or-equals, slant p less-than-or-equals, slant ∞, and the multiplier space of Wm,1 is realised as a dual space of certain continuous functions on Image n which vanish at infinity.
Resumo:
This paper describes the application of vector spaces over Galois fields, for obtaining a formal description of a picture in the form of a very compact, non-redundant, unique syntactic code. Two different methods of encoding are described. Both these methods consist in identifying the given picture as a matrix (called picture matrix) over a finite field. In the first method, the eigenvalues and eigenvectors of this matrix are obtained. The eigenvector expansion theorem is then used to reconstruct the original matrix. If several of the eigenvalues happen to be zero this scheme results in a considerable compression. In the second method, the picture matrix is reduced to a primitive diagonal form (Hermite canonical form) by elementary row and column transformations. These sequences of elementary transformations constitute a unique and unambiguous syntactic code-called Hermite code—for reconstructing the picture from the primitive diagonal matrix. A good compression of the picture results, if the rank of the matrix is considerably lower than its order. An important aspect of this code is that it preserves the neighbourhood relations in the picture and the primitive remains invariant under translation, rotation, reflection, enlargement and replication. It is also possible to derive the codes for these transformed pictures from the Hermite code of the original picture by simple algebraic manipulation. This code will find extensive applications in picture compression, storage, retrieval, transmission and in designing pattern recognition and artificial intelligence systems.
Resumo:
The transmitted signal is assumed to consist of a close succession of rectangular pulses of equal width. A matched filter scheme is employed and a theory is developed for a computer-aided optimization of the envelope of monotone compact signals for maximum rejection of dense clutter of any given distribution in range. Specific results are presented and indeterminate cases are discussed.
Resumo:
Learning automata are adaptive decision making devices that are found useful in a variety of machine learning and pattern recognition applications. Although most learning automata methods deal with the case of finitely many actions for the automaton, there are also models of continuous-action-set learning automata (CALA). A team of such CALA can be useful in stochastic optimization problems where one has access only to noise-corrupted values of the objective function. In this paper, we present a novel formulation for noise-tolerant learning of linear classifiers using a CALA team. We consider the general case of nonuniform noise, where the probability that the class label of an example is wrong may be a function of the feature vector of the example. The objective is to learn the underlying separating hyperplane given only such noisy examples. We present an algorithm employing a team of CALA and prove, under some conditions on the class conditional densities, that the algorithm achieves noise-tolerant learning as long as the probability of wrong label for any example is less than 0.5. We also present some empirical results to illustrate the effectiveness of the algorithm.
Resumo:
The angular-momentum flux from an inspiralling binary system of compact objects moving in quasi-elliptical orbits is computed at the third post-Newtonian (3PN) order using the multipolar post-Minkowskian wave generation formalism. The 3PN angular-momentum flux involves the instantaneous, tail, and tail-of-tails contributions as for the 3PN energy flux, and in addition a contribution due to nonlinear memory. We average the angular-momentum flux over the binary's orbit using the 3PN quasi-Keplerian representation of elliptical orbits. The averaged angular-momentum flux provides the final input needed for gravitational-wave phasing of binaries moving in quasi-elliptical orbits. We obtain the evolution of orbital elements under 3PN gravitational radiation reaction in the quasi-elliptic case. For small eccentricities, we give simpler limiting expressions relevant for phasing up to order e(2). This work is important for the construction of templates for quasi-eccentric binaries, and for the comparison of post-Newtonian results with the numerical relativity simulations of the plunge and merger of eccentric binaries.
Resumo:
An instrument for simultaneous measurement of dynamic strain and temperature in a thermally unstable ambience has been proposed, based on fiber Bragg grating technology. The instrument can function as a compact and stand-alone broadband thermometer and a dynamic strain gauge. It employs a source wavelength tracking procedure for linear dependence of the output on the measurand, offering high dynamic range. Two schemes have been demonstrated with their relative merits. As a thermometer, the present instrumental configuration can offer a linear response in excess of 500 degrees C that can be easily extended by adding a suitable grating and source without any alteration in the procedure. Temperature sensitivity is about 0.06 degrees C for a bandwidth of 1 Hz. For the current grating, the upper limit of strain measurement is about 150 mu epsilon with a sensitivity of about 80 n epsilon Hz(-1/2). The major source of uncertainty associated with dynamic strain measurement is the laser source intensity noise, which is of broad spectral band. A low noise source device or the use of optical power regulators can offer improved performance. The total harmonic distortion is less than 0.5% up to about 50 mu epsilon, 1.2% at 100 mu epsilon and about 2.3% at 150 mu epsilon. Calibrated results of temperature and strain measurement with the instrument have been presented. Traces of ultrasound signals recorded by the system at 200 kHz, in an ambience of 100-200 degrees C temperature fluctuation, have been included. Also, the vibration spectrum and engine temperature of a running internal combustion engine has been recorded as a realistic application of the system.