40 resultados para Contribution margin
Resumo:
Possible integration of Single Electron Transistor (SET) with CMOS technology is making the study of semiconductor SET more important than the metallic SET and consequently, the study of energy quantization effects on semiconductor SET devices and circuits is gaining significance. In this paper, for the first time, the effects of energy quantization on SET inverter performance are examined through analytical modeling and Monte Carlo simulations. It is observed that the primary effect of energy quantization is to change the Coulomb Blockade region and drain current of SET devices and as a result affects the noise margin, power dissipation, and the propagation delay of SET inverter. A new model for the noise margin of SET inverter is proposed which includes the energy quantization effects. Using the noise margin as a metric, the robustness of SET inverter is studied against the effects of energy quantization. It is shown that SET inverter designed with CT : CG = 1/3 (where CT and CG are tunnel junction and gate capacitances respectively) offers maximum robustness against energy quantization.
Resumo:
The grain size dependencies of the yield and fracture stresses in hot rolled Mg-12.7 at % Cd alloy have been measured in the temperature range 77 to 420 K and are found to be in accordance with HalI-Petch type of equations. In hot rolled Mg-12.7 Cd alloy, the HalI-Petch intercept a w is higher than that in hot rolled magnesium, while the slope ky is comparable. The fracture is intercrystalline at 77 K, mixed mode at 300 K and ductile at 420 K. The above flow and fracture behaviours are interpreted in terms of the complimentary effects of texture hardening and solid solution strengthening.
Resumo:
The Wilson coefficient corresponding to the gluon-field strength GμνGμν is evaluated for the nucleon current correlation function in the presence of a static external electromagnetic field, using a regulator mass Λ to separate the high-momentum part of the Feynman diagrams. The magnetic-moment sum rules are analyzed by two different methods and the sensitivity of the results to variations in Λ are discussed.
Resumo:
The extragalactic diffuse emission at gamma-ray energies has interesting cosmological implications since these photons suffer little or no attenuation during their propagation from the site of origin. The emission could originate from either truly diffuse processes or from unresolved point sources such as AGNs, normal galaxies and starburst galaxies. Here, we examine the unresolved point source origin of the extragalactic gamma-ray background emission from normal galaxies and starburst galaxies. gamma-ray emission from normal galaxies is primarily coming from cosmic-ray interactions with interstellar matter and radiation (similar to 90%) along with a small contribution from discrete point sources (similar to 10%). Starburst galaxies are expected to have enhanced supernovae activity which leads to higher cosmic-ray densities, making starburst galaxies sufficiently luminous at gamma-ray energies to be detected by the current gamma-ray mission(Fermi Gamma-ray Space Telescope).
Resumo:
This paper presents a Chance-constraint Programming approach for constructing maximum-margin classifiers which are robust to interval-valued uncertainty in training examples. The methodology ensures that uncertain examples are classified correctly with high probability by employing chance-constraints. The main contribution of the paper is to pose the resultant optimization problem as a Second Order Cone Program by using large deviation inequalities, due to Bernstein. Apart from support and mean of the uncertain examples these Bernstein based relaxations make no further assumptions on the underlying uncertainty. Classifiers built using the proposed approach are less conservative, yield higher margins and hence are expected to generalize better than existing methods. Experimental results on synthetic and real-world datasets show that the proposed classifiers are better equipped to handle interval-valued uncertainty than state-of-the-art.
Resumo:
Abstract is not available.
Resumo:
Subsurface geophysical surveys were carried out using a large range of methods in an unconfined sandstone aquifer in semiarid south-western Niger for improving both the conceptual model of water flow through the unsaturated zone and the parameterization of numerical a groundwater model of the aquifer. Methods included: electromagnetic mapping, electrical resistivity tomography (ERT), resistivity logging, time domain electromagnetic sounding (TDEM), and magnetic resonance sounding (MRS). Analyses of electrical conductivities, complemented by geochemical measurements, allowed us to identify preferential pathways for infiltration and drainage beneath gullies and alluvial fans. The mean water content estimated by MRS (13%) was used for computing the regional groundwater recharge from long-term change in the water table. The ranges in permeability and water content obtained with MRS allowed a reduction of the degree of freedom of aquifer parameters used in groundwater modelling.
Resumo:
The origin of the extragalactic gamma-ray background (EGRB) is still an open question, even nearly forty years after its discovery. The emission could originate either from truly diffuse processes or from unresolved point sources. Although the majority of the 271 point sources detected by EGRET (Energetic Gamma Ray Experiment Telescope) are unidentified, of the identified sources, blazars are the dominant candidates. Therefore, unresolved blazars may be considered the main contributor to the EGRB, and many studies have been carried out to understand their distribution, evolution and contribution to the EGRB. Considering that gamma-ray emission comes mostly from jets of blazars and that the jet emission decreases rapidly with increasing jet to line-of-sight angle, it is not surprising that EGRET was not able to detect many large inclination angle active galactic nuclei (AGNs). Though Fermi could only detect a few large inclination angle AGNs during the first three months of its survey, it is expected to detect many such sources in the near future. Since non-blazar AGNs are expected to have higher density as compared to blazars, these could also contribute significantly to the EGRB. In this paper, we discuss contributions from unresolved discrete sources including normal galaxies, starburst galaxies, blazars and off-axis AGNs to the EGRB.
Resumo:
A compact model for noise margin (NM) of single-electron transistor (SET) logic is developed, which is a function of device capacitances and background charge (zeta). Noise margin is, then, used as a metric to evaluate the robustness of SET logic against background charge, temperature, and variation of SET gate and tunnel junction capacitances (CG and CT). It is shown that choosing alpha=CT/CG=1/3 maximizes the NM. An estimate of the maximum tolerable zeta is shown to be equal to plusmn0.03 e. Finally, the effect of mismatch in device parameters on the NM is studied through exhaustive simulations, which indicates that a isin [0.3, 0.4] provides maximum robustness. It is also observed that mismatch can have a significant impact on static power dissipation.
Resumo:
In this paper we propose a novel family of kernels for multivariate time-series classification problems. Each time-series is approximated by a linear combination of piecewise polynomial functions in a Reproducing Kernel Hilbert Space by a novel kernel interpolation technique. Using the associated kernel function a large margin classification formulation is proposed which can discriminate between two classes. The formulation leads to kernels, between two multivariate time-series, which can be efficiently computed. The kernels have been successfully applied to writer independent handwritten character recognition.
Resumo:
In this paper the static noise margin for SET (single electron transistor) logic is defined and compact models for the noise margin are developed by making use of the MIB (Mahapatra-Ionescu-Banerjee) model. The variation of the noise margin with temperature and background charge is also studied. A chain of SET inverters is simulated to validate the definition of various logic levels (like VIH, VOH, etc.) and noise margin. Finally the noise immunity of SET logic is compared with current CMOS logic.
Resumo:
With an objective to understand the nature of forces which contribute to the disjoining pressure of a thin water film on a steel substrate being pressed by an oil droplet, two independent sets of experiments were done. (i) A spherical silica probe approaches the three substrates; mica, PTFE and steel, in a 10 mM electrolyte solution at two different pHs (3 and 10). (ii) The silica probe with and without a smeared oil film approaches the same three substrates in water (pH = 6). The surface potential of the oil film/water was measured using a dynamic light scattering experiment. Assuming the capacity of a substrate for ion exchange the total interaction force for each experiment was estimated to include the Derjaguin-Landau-Verwey-Overbeek (DLVO) force, hydration repulsion, hydrophobic attraction and oil-capillary attraction. The best fit of these estimates to the force-displacement characteristics obtained from the two sets of experiment gives the appropriate surface potentials of the substrates. The procedure allows an assessment of the relevance of a specific physical interaction to an experimental configuration. Two of the principal observations of this work are: (i) The presence of a surface at constant charge, as in the presence of an oil film on the probe, significantly enhances the counterion density over what is achieved when both the surfaces allow ion exchange. This raises the corresponding repulsion barrier greatly. (ii) When the substrate surface is wettable by oil, oil-capillary attraction contributes substantially to the total interaction. If it is not wettable the oil film is deformed and squeezed out. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
n many parts of the world, the goal of electricity supply industries is always the introduction of competition and a lowering of the average consumer price. Because of this it has become much more important to be able to determine which generators are supplying a particular load, how much use each generator is making of a transmission line and what is generator's contribution to the system losses. In this paper a case study on generator contributions towards loads and transmission flows are illustrated with an equivalent 11-bus system, a part of Indian Southern Grid, based on the concepts of circuit flow directions, for normal and network contingency conditions.
Resumo:
Making use of aerosol optical depths (AOD) derived from MODIS (onboard TERRA satellite) and winds from NCEP, and the fact that sea-salt optical depth over ocean is determined primarily by sea-surface wind speed, we examine the contribution of sea-salt to the composite aerosol optical depth ( AOD) over Arabian Sea ( AS), by developing empirical models for characterizing wind-speed dependence of sea-salt optical depth. We show that at high wind speeds, sea-salt contributes 81% to the coarse mode and 42% to the composite AOD in the southern AS. In contrast to this, over the northern AS, share of sea-salt to coarse mode and composite optical depth is only 35% and 16% respectively. Comparison of the sea-salt optical depth and coarse mode optical depth ( MODIS) showed excellent agreement. The sea-salt optical depth over AS at moderate to high wind speed is comparable to the anthropogenic AOD reported for this region during winter.