10 resultados para urinary tract cancer

em Helda - Digital Repository of University of Helsinki


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extraintestinal pathogenic Escherichia coli (ExPEC) represent a diverse group of strains of E. coli, which infect extraintestinal sites, such as the urinary tract, the bloodstream, the meninges, the peritoneal cavity, and the lungs. Urinary tract infections (UTIs) caused by uropathogenic E. coli (UPEC), the major subgroup of ExPEC, are among the most prevalent microbial diseases world wide and a substantial burden for public health care systems. UTIs are responsible for serious morbidity and mortality in the elderly, in young children, and in immune-compromised and hospitalized patients. ExPEC strains are different, both from genetic and clinical perspectives, from commensal E. coli strains belonging to the normal intestinal flora and from intestinal pathogenic E. coli strains causing diarrhea. ExPEC strains are characterized by a broad range of alternate virulence factors, such as adhesins, toxins, and iron accumulation systems. Unlike diarrheagenic E. coli, whose distinctive virulence determinants evoke characteristic diarrheagenic symptoms and signs, ExPEC strains are exceedingly heterogeneous and are known to possess no specific virulence factors or a set of factors, which are obligatory for the infection of a certain extraintestinal site (e. g. the urinary tract). The ExPEC genomes are highly diverse mosaic structures in permanent flux. These strains have obtained a significant amount of DNA (predictably up to 25% of the genomes) through acquisition of foreign DNA from diverse related or non-related donor species by lateral transfer of mobile genetic elements, including pathogenicity islands (PAIs), plasmids, phages, transposons, and insertion elements. The ability of ExPEC strains to cause disease is mainly derived from this horizontally acquired gene pool; the extragenous DNA facilitates rapid adaptation of the pathogen to changing conditions and hence the extent of the spectrum of sites that can be infected. However, neither the amount of unique DNA in different ExPEC strains (or UPEC strains) nor the mechanisms lying behind the observed genomic mobility are known. Due to this extreme heterogeneity of the UPEC and ExPEC populations in general, the routine surveillance of ExPEC is exceedingly difficult. In this project, we presented a novel virulence gene algorithm (VGA) for the estimation of the extraintestinal virulence potential (VP, pathogenicity risk) of clinically relevant ExPECs and fecal E. coli isolates. The VGA was based on a DNA microarray specific for the ExPEC phenotype (ExPEC pathoarray). This array contained 77 DNA probes homologous with known (e.g. adhesion factors, iron accumulation systems, and toxins) and putative (e.g. genes predictably involved in adhesion, iron uptake, or in metabolic functions) ExPEC virulence determinants. In total, 25 of DNA probes homologous with known virulence factors and 36 of DNA probes representing putative extraintestinal virulence determinants were found at significantly higher frequency in virulent ExPEC isolates than in commensal E. coli strains. We showed that the ExPEC pathoarray and the VGA could be readily used for the differentiation of highly virulent ExPECs both from less virulent ExPEC clones and from commensal E. coli strains as well. Implementing the VGA in a group of unknown ExPECs (n=53) and fecal E. coli isolates (n=37), 83% of strains were correctly identified as extraintestinal virulent or commensal E. coli. Conversely, 15% of clinical ExPECs and 19% of fecal E. coli strains failed to raster into their respective pathogenic and non-pathogenic groups. Clinical data and virulence gene profiles of these strains warranted the estimated VPs; UPEC strains with atypically low risk-ratios were largely isolated from patients with certain medical history, including diabetes mellitus or catheterization, or from elderly patients. In addition, fecal E. coli strains with VPs characteristic for ExPEC were shown to represent the diagnostically important fraction of resident strains of the gut flora with a high potential of causing extraintestinal infections. Interestingly, a large fraction of DNA probes associated with the ExPEC phenotype corresponded to novel DNA sequences without any known function in UTIs and thus represented new genetic markers for the extraintestinal virulence. These DNA probes included unknown DNA sequences originating from the genomic subtractions of four clinical ExPEC isolates as well as from five novel cosmid sequences identified in the UPEC strains HE300 and JS299. The characterized cosmid sequences (pJS332, pJS448, pJS666, pJS700, and pJS706) revealed complex modular DNA structures with known and unknown DNA fragments arranged in a puzzle-like manner and integrated into the common E. coli genomic backbone. Furthermore, cosmid pJS332 of the UPEC strain HE300, which carried a chromosomal virulence gene cluster (iroBCDEN) encoding the salmochelin siderophore system, was shown to be part of a transmissible plasmid of Salmonella enterica. Taken together, the results of this project pointed towards the assumptions that first, (i) homologous recombination, even within coding genes, contributes to the observed mosaicism of ExPEC genomes and secondly, (ii) besides en block transfer of large DNA regions (e.g. chromosomal PAIs) also rearrangements of small DNA modules provide a means of genomic plasticity. The data presented in this project supplemented previous whole genome sequencing projects of E. coli and indicated that each E. coli genome displays a unique assemblage of individual mosaic structures, which enable these strains to successfully colonize and infect different anatomical sites.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Alcohol consumption and smoking are the main causes of upper digestive tract cancers. These risk factors account for over 75% of all cases in developed countries. Epidemiological studies have shown that alcohol and tobacco interact in a multiplicative way to the cancer risk, but the pathogenetic mechanism behind this is poorly understood. Strong experimental and human genetic linkage data suggest that acetaldehyde is one of the major factors behind the carcinogenic effect. In the digestive tract, acetaldehyde is mainly formed by microbial metabolism of ethanol. Acetaldehyde is also a major constituent of tobacco smoke. Thus, acetaldehyde from both of these sources may have an interacting carcinogenic effect in the human upper digestive tract. Aims: The first aim of this thesis was to investigate acetaldehyde production and exposure in the human mouth resulting from alcohol ingestion and tobacco smoking in vivo. Secondly, specific L-cysteine products were prepared to examine their efficacy in the binding of salivary acetaldehyde in order to reduce the exposure of the upper digestive tract to acetaldehyde. Methods: Acetaldehyde levels in saliva were measured from human volunteers during alcohol metabolism, during tobacco smoking and during the combined use of alcohol and tobacco. The ability of L-cysteine to eliminate acetaldehyde during alcohol metabolism and tobacco smoking was also investigated with specifically developed tablets. Also the acetaldehyde production of Escherichia coli - an important member of the human microbiota - was measured in different conditions prevailing in the digestive tract. Results and conclusions: These studies established that smokers have significantly increased acetaldehyde exposure during ethanol consumption even when not actively smoking. Acetaldehyde exposure was dramatically further increased during active tobacco smoking. Thus, the elevated aerodigestive tract cancer risk observed in smokers and drinkers may be the result of the increased acetaldehyde exposure. Acetaldehyde produced in the oral cavity during ethanol challenge was significantly decreased by a buccal L-cysteine -releasing tablet. Also smoking-derived acetaldehyde could be totally removed by using a tablet containing L-cysteine. In conclusion, this thesis confirms the essential role of acetaldehyde in the pathogenesis of alcohol- and smoking-induced cancers. This thesis presents a novel experimental approach to decrease the local acetaldehyde exposure of the upper digestive tract with L-cysteine, with the eventual goal of reducting the prevalence of upper digestive tract cancers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Human adenoviruses (Ads) have been classified into six species (A to F) currently containing 55 serotypes. For almost 2 decades vectors derived from group C serotype Ad5 have been extensively used for gene transfer studies. These Ad5 based vectors are able to efficiently infect many mammalian cell types (including both mitotic and post-mitotic cells) through interaction with a primary attachment receptor, the coxsackie and adenovirus receptor (CAR). Despite the many advantages of Ad5 based vectors a number of limitations have affected their therapeutic application to many diseases. Although they can transduce many tissue types, Ad5 based vectors are unable to efficiently transduce several potential disease target cell types, including hematopoietic stem cells and malignant tumor cells. Therefore, newer vectors have been developed based on Ad serotypes other than Ad5. This thesis focuses on species B Ads. Species B Ads are comprised of three groups based on their receptor usage. Group 1 of species B Ads (Ad16, 21, 35, 50) nearly exclusively utilize CD46 as a receptor; Group 2 (Ad3, Ad7, 14) share a common, unidentified receptor/s, which is not CD46 and which was tentatively named receptor X; Group 3 (Ad11) preferentially interacts with CD46, but also utilizes receptor X if CD46 is blocked. Species B group Ads are important human pathogens. Species B group 2 serotypes are isolated from patients with respiratory tract infections, whereas the Group 1 viruses are described as causing kidney and urinary tract infections. B-group Ad infections often occur in immunocompromised patients, including AIDS patients, recipients of bone marrow transplants, or chemotherapy patients. Recent studies performed in U.S. military training facilities indicate an emergence of diverse species B serotypes at the majority of sites. This included the group 1 serotype 21 and the group 2 serotypes 3, 7, and 14. CD46-targeting vectors derived from Ad35 and Ad11 are important tools for in vitro gene transfer into human stem cells, including hematopoietic stem cells and induced pluripotent stem cells. Ad35 and Ad11 have been used as tools for cancer therapy, because CD46 appears to be uniformely overexpressed on many cancers. Furthermore, receptor X-targeting vectors, i.e vectors derived from Ad3 or vectors containing Ad3 fibers have shown superior in the transduction of tumor cells both in vitro and in vivo and are currently being used clinically in cancer patients. While extensive basic virology studies have been done on Ad5, the information of species B group 1 interaction with CD46 is limited. Furthermore, the receptor for a major subgroup of species B Ads (receptor X) is unknown. The goal of this thesis was it therefore to better understand virological and translational aspects of species B Ads. The specific findings described in this thesis include i) the identification of CD46 binding sites within the Ad35 fiber knob, ii) the study of the in vitro and in vivo properties of Ad vectors with increased affinity to CD46. iii) the study of the receptor usage of a newly emergent Ad14a, iv) the identification of desmoglein 2 as the receptor for Ad3, Ad7, Ad11, and Ad14, v) the delineation of structural details of Ad3 virus interaction with DSG2, and vi) the analysis of functional consequences of Ad3-DSG2 interaction. As a result of these basic virology studies two Ad-derived recombinant proteins have been generated that can be used to enhance cancer therapy by monoclonal antibodies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Increasing antimicrobial resistance in bacteria has led to the need for better understanding of antimicrobial usage patterns. In 1999, the World Organisation for Animal Health (OIE) recommended that an international ad hoc group should be established to address human and animal health risks related to antimicrobial resistance and the contribution of antimicrobial usage in veterinary medicine. In European countries the need for continuous recording of the usage of veterinary antimicrobials as well as for animal species-specific and indication-based data on usage has been acknowledged. Finland has been among the first countries to develop prudent use guidelines in veterinary medicine, as the Ministry of Agriculture and Forestry issued the first animal species-specific indication-based recommendations for antimicrobial use in animals in 1996. These guidelines have been revised in 2003 and 2009. However, surveillance on the species-specific use of antimicrobials in animals has not been performed in Finland. This thesis provides animal species-specific information on indication-based antimicrobial usage. Different methods for data collection have been utilized. Information on antimicrobial usage in animals has been gathered in four studies (studies A-D). Material from studies A, B and C have been used in an overlapping manner in the original publications I-IV. Study A (original publications I & IV) presents a retrospective cross-sectional survey on prescriptions for small animals at the Veterinary Teaching Hospital of the University of Helsinki. Prescriptions for antimicrobial agents (n = 2281) were collected and usage patterns, such as the indication and length of treatment, were reviewed. Most of the prescriptions were for dogs (78%), and primarily for the treatment of skin and ear infections most of which were treated with cephalexin for a median period of 14 days. Prescriptions for cats (18%) were most often for the treatment of urinary tract infections with amoxicillin for a median length of 10 days. Study B (original publication II) was a retrospective cross-sectional survey where prescriptions for animals were collected from 17 University Pharmacies nationwide. Antimicrobial prescriptions (n = 1038) for mainly dogs (65%) and cats (19%) were investigated. In this study, cephalexin and amoxicillin were also the most frequently used drugs for dogs and cats, respectively. In study C (original publications III & IV), the indication-based usage of antimicrobials of practicing veterinarians was analyzed by using a prospective questionnaire. Randomly selected practicing veterinarians in Finland (n = 262) recorded all their antimicrobial usage during a 7-day study period. Cattle (46%) with mastitis were the most common patients receiving antimicrobial treatment, generally intramuscular penicillin G or intramammary treatment with ampicillin and cloxacillin. The median length of treatment was four days, regardless of the route of administration. Antimicrobial use in horses was evaluated in study D, the results of which are previously unpublished. Firstly, data collected with the prospective questionnaire from the practicing veterinarians showed that horses (n = 89) were frequently treated for skin or wound infections by using penicillin G or trimethoprim-sulfadiazine. The mean duration of treatment was five to seven days. Secondly, according to retrospective data collected from patient records, horses (n = 74) that underwent colic surgery at the Veterinary Teaching Hospital of the University of Helsinki were generally treated according to national and hospital recommendations; penicillin G and gentamicin was administered preoperatively and treatment was continued for a median of three days postoperatively. In conclusion, Finnish veterinarians followed well the national prudent use guidelines. Narrow-spectrum antimicrobials were preferred and, for instance, fluoroquinolones were used sparingly. Prescription studies seemed to give good information on antimicrobials usage, especially when combined with complementary information from patient records. A prospective questionnaire study provided a fair amount of valuable data on several animal species. Electronic surveys are worthwhile exploiting in the future.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Matrix metalloproteinases (MMPs) comprise a family of 23 zinc-dependent human endopeptidases that can degrade virtually all components of the extracellular matrix (ECM). They are classified into eight subgroups according to their structure and into six subgroups based on their substrate-specificity. MMPs have been implicated in inflammation, tissue destruction, cell migration, arthritis, vascular remodeling, angiogenesis, and tumor growth and invasion. MMPs are inhibited by their natural inhibitors, tissue inhibitors of metalloproteinases (TIMPs). Different MMPs function in the same tasks depending on the tissue or cancer subtype. I investigated the role of recently discovered MMPs, especially MMPs-19 and -26, in intestinal inflammation, in intestinal and cutaneous wound healing, and in intestinal cancer. Several MMPs and TIMPs were studied to determine their exact location at tissue level and to obtain information on possible functions of MMPs in such tissues and diseases as the healthy intestine, inflammatory bowel disease (IBD), neonatal necrotizing enterocolitis (NEC), pyoderma gangrenosum (PG), and colorectal as well as pancreatic cancers. In latent celiac disease (CD), I attempted to identify markers to predict later onset of CD in children and adolescents. The main methods used were immunohistochemistry, in situ hybridization, and Taqman RT-PCR. My results show that MMP-26 is important for re-epithelialization in intestinal and cutaneous wound healing. In colon and pancreatic cancers, MMP-26 seems to be a marker of invasive potential, although it is not itself expressed at the invasive front. MMP-21 is upregulated in pancreatic cancer and may be associated with tumor differentiation. MMPs-19 and -28 are associated with normal tissue turnover in the intestine, but they disappear in tumor progression as if they were protective markers . MMP-12 is an essential protease in intestinal inflammation and tissue destruction, as seen here in NEC and in previous CD studies. In patients with type 1 diabetes (T1D), MMPs-1, -3, and -12 were upregulated in the intestinal mucosa. Furthermore, MMP-7 was strongly elevated in NEC. In a model of aberrant wound repair, PG, MMPs-8, -9, and 10 and TNFα may promote ECM destruction, while absence of MMP-1 and MMP-26 from keratinocytes retards re-epithelialization. Based on my results, I suggest MMP-26 to be considered a putative marker for poor prognosis in pancreatic and colon cancer. However, since it functions differently in various tissues and tumor subtypes, this use cannot be generalized. Furthermore, MMP-26 is a beneficial marker for wound healing if expressed by migrating epithelial cells. MMP-12 expression in latent CD patients warrants research in a larger patient population to confirm its role as a specific marker for CD in pathologically indistinct cases. MMP-7 should be considered one of the most crucial proteases in NEC-associated tissue destruction; hence, specific inhibitors of this MMP are worth investigating. In PG, TNFα inhibitors are potential therapeutic agents, as shown already in clinical trials. In conclusion, studies of several MMPs in specific diseases and in healthy tissues are needed to elucidate their roles at the tissue level. MMPs and TIMPs are not exclusively destructive or reparative in tissues. They seem to function differently in different tissues. To identify selective MMP inhibitors, we must thoroughly understand the MMP profile (degradome) and their functions in various organs not to interfere with normal reparative functions during wound repair or beneficial host-response effects during cancer initiation and growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mammalian gastrointestinal tract and liver are self-renewing organs that are able to sustain themselves due to stem cells present in their tissues. In constant, inflammation-related epithelial damage, vigorous activation of stem cells may lead to their uncontrolled proliferation, and further, to cancer. GATA-4, GATA-5, and GATA-6 regulate cell proliferation and differentiation in many mammalian organs. Lack of GATA-4 or GATA-6 leads to defective endodermal development and cell differentiation. GATA-4 and GATA-5 are considered the ones with tumor suppressive functions, whereas GATA-6 is more related to tumor promotion. In the digestive system their roles in inflammation and tumor-related molecular pathways remain unclear. In this study, we examined the GATA-related molecular pathways involved in normal tissue organization and renewal and in inflammation-related epithelial repair in the gastrointestinal tract and liver. The overall purpose of this study was to elucidate the relation of GATA factors to gastrointestinal and hepatic disease pathology and to evaluate their possible clinical significance in tumor biology. The results indicated distinct expression patterns for GATA-4, GATA-5, and GATA-6 in the human and murine gastrointestinal tract and liver, and their involvement in the regulation of intestine-specific genes. GATA-5 was confined to the intestines of suckling mice, suggesting an association with postnatal enzymatic changes. GATA-4 was upregulated in bowel inflammation concomitantly with TGF-β signaling. In gastrointestinal tumors, GATA-4 was restricted to benign neoplasias of the stomach, while GATA-6 was detected especially at the invasive edges of malignant tumors throughout the gut. In the liver, GATA-4 was upregulated in pediatric tumors along with erythropoietin (Epo), which was detected also in the sera of tumor patients. Furthermore, GATA-4 was enhanced in areas of vigorous hepatic regeneration in patients with tyrosinemia type I. These results suggest a central role for GATA-4 in pediatric tumor biology of the liver. To conclude, GATA-4, GATA-5, and GATA-6 are associated with normal gastrointestinal and hepatic development and regeneration. The appearance of GATA-4 along with TGF-β-signaling in the inflammatory bowel suggests a protective role in the response to inflammation-related epithelial destruction. However, in extremely malignant pediatric liver tumors, GATA-4 function is unlikely to be tumor-suppressing, probably due to the nature of the very primitive multipotent tumor cells. GATA-4, along with its possible downstream factor Epo, could be utilized as novel hepatic tumor markers to supplement the present diagnostics. They could also serve a function in future biological therapies for aggressive pediatric tumors.