15 resultados para trunk muscles
em Helda - Digital Repository of University of Helsinki
Resumo:
Muscle glycogen exists in two forms: low molecular weight pro-glycogen and high molecular weight macro-glycogen. The degradation of glycogen to glucose 1 phosphate and free glucose is catalysed by glycogen phosphorylase together with glycogen debranching enzyme (GDE). The process in which glycogen is broken down via anaerobic pathways to lactate, results in the acidification of the muscles and has a great influence on meat quality. Thus, the overall aim of this thesis was to characterise the post mortem action of GDE in muscles of meat production animals (pigs, cattle and chickens). Interest was focused on the differences in GDE activity between fast twitch glycolytic muscles and slow twitch oxidative muscles. The effects of pH, temperature, RN genotype (PRKAG3 gene), and of time post mortem on GDE activity were also investigated. This thesis showed that there are differences in GDE activity between animal species and between different muscles of an animal. It was shown that in pigs and cattle, higher GDE activity and phosphorylase activity exists in the fast twitch glycolytic muscles than in slow twitch oxidative muscles of the same animal. Thus, the high activity of these enzymes enables a faster rate of glycogenolysis in glycolytic M. longissimus dorsi compared to oxidative M. masseter. In chicken muscles, the GDE activity was low compared to pig or cattle muscles. Furthermore, the GDE activity in the glycolytic M. pectoralis superficialis was lower than in more oxidative M. quadriceps femoris despite the high phosphorylase activity in the former. The relative ratios between phosphorylase and GDE activity were higher in fast twitch glycolytic muscles than in slow twitch oxidative muscles of all studied animals. This suggests that the relatively low GDE activity compared to the phosphorylase activity in fast twitch glycolytic muscles may be a protection mechanism in living muscle against a very fast pH decrease. Chilling significantly decreased GDE activity and below 15 C porcine GDE was almost inactive. The effect of pH on GDE activity was only minor at the range normally found in post mortem muscles (pH 7.4 to 5.0). The GDE activity remained level for several hours after slaughter. During the first hours post mortem, GDE activity was similar in RN- carrier pigs and in wild type pigs. However, the GDE activity declined faster in M. longissimus dorsi from wild type pigs than in the RN carrier pigs, the difference between genotypes was significant after 24 h post mortem. Pro-glycogen and macro-glycogen contents were higher, pH decrease was faster and ultimate pH was lower in RN- carrier pigs than in wild type pigs. In the RN- carriers, the prolonged high GDE activity level may enable an extended pH decrease and lower ultimate pH in their muscles. In conclusion, GDE is not the main factor determining the rate or the extent of post mortem glycogenolysis, but under certain conditions, such as in very fast chilling, the inhibition of GDE activity in meat may reduce the rate of pH decrease and result in higher ultimate pH. The rate and extent of pH decrease affects several meat quality traits.
Resumo:
The mitochondrion is an organelle of outmost importance, and the mitochondrial network performs an array of functions that go well beyond ATP synthesis. Defects in mitochondrial performance lead to diseases, often affecting nervous system and muscle. Although many of these mitochondrial diseases have been linked to defects in specific genes, the molecular mechanisms underlying the pathologies remain unclear. The work in this thesis aims to determine how defects in mitochondria are communicated within - and interpreted by - the cells, and how this contributes to disease phenotypes. Fumarate hydratase (FH) is an enzyme of the citrate cycle. Recessive defects in FH lead to infantile mitochondrial encephalopathies, while dominant mutations predispose to tumor formation. Defects in succinate dehydrogenase (SDH), the enzyme that precedes FH in the citrate cycle, have also been described. Mutations in SDH subunits SDHB, SDHC and SDHD are associated with tumor predisposition, while mutations in SDHA lead to a characteristic mitochondrial encephalopathy of childhood. Thus, the citrate cycle, via FH and SDH, seems to have essential roles in mitochondrial function, as well as in the regulation of processes such as cell proliferation, differentiation or death. Tumor predisposition is not a typical feature of mitochondrial energy deficiency diseases. However, defects in citrate cycle enzymes also affect mitochondrial energy metabolism. It is therefore necessary to distinguish what is specific for defects in citrate cycle, and thus possibly associated with the tumor phenotype, from the generic consequences of defects in mitochondrial aerobic metabolism. We used primary fibroblasts from patients with recessive FH defects to study the cellular consequences of FH-deficiency (FH-). Similarly to the tumors observed in FH- patients, these fibroblasts have very low FH activity. The use of primary cells has the advantage that they are diploid, in contrast with the aneuploid tumor cells, thereby enabling the study of the early consequences of FH- in diploid background, before tumorigenesis and aneuploidy. To distinguish the specific consequences of FH- from typical consequences of defects in mitochondrial aerobic metabolism, we used primary fibroblasts from patients with MELAS (mitochondrial encephalopathy with lactic acidosis and stroke-like episodes) and from patients with NARP (neuropathy, ataxia and retinitis pigmentosa). These diseases also affect mitochondrial aerobic metabolism but are not known to predispose to tumor formation. To study in vivo the systemic consequences of defects in mitochondrial aerobic metabolism, we used a transgenic mouse model of late-onset mitochondrial myopathy. The mouse contains a transgene with an in-frame duplication of a segment of Twinkle, the mitochondrial replicative helicase, whose defects underlie the human disease progressive external ophthalmoplegia. This mouse model replicates the phenotype in the patients, particularly neuronal degeneration, mitochondrial myopathy, and subtle decrease of respiratory chain activity associated with mtDNA deletions. Due to the accumulation of mtDNA deletions, the mouse was named deletor. We first studied the consequences of FH- and of respiratory chain defects for energy metabolism in primary fibroblasts. To further characterize the effects of FH- and respiratory chain malfunction in primary fibroblasts at transcriptional level, we used expression microarrays. In order to understand the in vivo consequences of respiratory chain defects in vivo, we also studied the transcriptional consequences of Twinkle defects in deletor mice skeletal muscle, cerebellum and hippocampus. Fumarate accumulated in the FH- homozygous cells, but not in the compound heterozygous lines. However, virtually all FH- lines lacked cytoplasmic FH. Induction of glycolysis was common to FH-, MELAS and NARP fibroblasts. In deletor muscle glycolysis seemed to be upregulated. This was in contrast with deletor cerebellum and hippocampus, where mitochondrial biogenesis was in progress. Despite sharing a glycolytic pattern in energy metabolism, FH- and respiratory chain defects led to opposite consequences in redox environment. FH- was associated with reduced redox environment, while MELAS and NARP displayed evidences of oxidative stress. The deletor cerebellum had transcriptional induction of antioxidant defenses, suggesting increased production of reactive oxygen species. Since the fibroblasts do not represent the tissues where the tumors appear in FH- patients, we compared the fibroblast array data with the data from FH- leiomyomas and normal myometrium. This allowed the determination of the pathways and networks affected by FH-deficiency in primary cells that are also relevant for myoma formation. A key pathway regulating smooth muscle differentiation, SRF (serum response factor)-FOS-JUNB, was found to be downregulated in FH- cells and in myomas. While in the deletor mouse many pathways were affected in a tissue-specific basis, like FGF21 induction in the deletor muscle, others were systemic, such as the downregulation of ALAS2-linked heme synthesis in all deletor tissues analyzed. However, interestingly, even a tissue-specific response of FGF21 excretion could elicit a global starvation response. The work presented in this thesis has contributed to a better understanding of mitochondrial stress signalling and of pathways interpreting and transducing it to human pathology.
Resumo:
Temporomandibular disorders (TMD) and psychosocial factors reportedly associate. The underlying factors remain partially obscure, however, and further studies are required to clarify the relationships. The aims of this study were thus to assess in a non-patient working population the prevalence of TMD and related symptoms, and to clinically diagnose and follow the natural courses of TMD over a one-year period. In addition, possible comorbidity of temporomandibular and/or neck muscle pain and perceived stress and their impact on work performance were investigated, as well as how various psychosocial aspects relate to TMD. A questionnaire was mailed to all 30- to 55-year-old employees of the Finnish Broadcasting Company Ltd. whose employment in the Helsinki area had lasted at least five years (n = 1784). Of the 1339 subjects, who returned the questionnaire, 241 were examined according to the RDC/TMD and standard neck muscle palpation methods. Clinical signs of temporomandibular and/or neck muscle pain were found in 118 subjects. One-year follow-up TMD examinations were conducted on 211 subjects. The prevalence of frequent painless TMJ-related symptoms was 10%, orofacial pain 7%, neck pain 38%, and headache 15%. TMD diagnoses were: myofascial pain (13%), disc displacements (16%), and arthralgia, osteoarthritis, osteoarthrosis (4%). Chronic myofascial pain was present in 7% and chronic disc displacement with reduction in 11% of the subjects. Symptoms were significantly associated with almost all the studied psychosocial symptoms. Reduced work performance was significantly positively associated with continuous pain, severity of pain, and health stress perception, and according to logistic regression, somatization with the probability of having chronic myofascial pain. It could be concluded based on the results of this study among a non-patient working population that TMD and related symptoms are common and associated with psychosocial factors. Moreover, myofascial pain and disc displacement with reduction are the most common diagnoses of TMD. In addition, self-reported health related stress, and continuous pain in temporomandibular and/or neck muscles are associated with reduced work performance, and somatization is significantly associated with chronic myofascial pain.
Resumo:
The most common connective tissue research in meat science has been conducted on the properties of intramuscular connective tissue (IMCT) in connection with eating quality of meat. From the chemical and physical properties of meat, researchers have concluded that meat from animals younger than physiological maturity is the most tender. In pork and poultry, different challenges have been raised: the structure of cooked meat has weakened. In extreme cases raw porcine M. semimembranosus (SM) and in most turkey M. pectoralis superficialis (PS) can be peeled off in strips along the perimysium which surrounds the muscle fibre bundles (destructured meat), and when cooked, the slices disintegrate. Raw chicken meat is generally very soft and when cooked, it can even be mushy. The overall aim of this thesis was to study the thermal properties of IMCT in porcine SM in order to see if these properties were in association with destructured meat in pork and to characterise IMCT in poultry PS. First a 'baseline' study to characterise the thermal stability of IMCT in light coloured (SM and M. longissimus dorsi in pigs and PS in poultry) and dark coloured (M. infraspinatus in pigs and a combination of M. quadriceps femoris and M. iliotibialis lateralis in poultry) muscles was necessary. Thereafter, it was investigated whether the properties of muscle fibres differed in destructured and normal porcine muscles. Collagen content and also solubility of dark coloured muscles were higher than in light coloured muscles in pork and poultry. Collagen solubility was especially high in chicken muscles, approx. 30 %, in comparison to porcine and turkey muscles. However, collagen content and solubility were similar in destructured and normal porcine SM muscles. Thermal shrinkage of IMCT occurred at approximately 65 °C in pork and poultry. It occurred at lower temperature in light coloured muscles than in dark coloured muscles, although the difference was not always significant. The onset and peak temperatures of thermal shrinkage of IMCT were lower in destructured than in normal SM muscles, when the IMCT from SM muscles exhibiting ten lowest and ten highest ultimate pH values were investigated (onset: 59.4 °C vs. 60.7 °C, peak: 64.9 °C vs. 65.7 °C). As the destructured meat was paler than normal meat, the PSE (pale, soft, exudative) phenomenon could not be ruled out. The muscle fibre cross sectional area (CSA), the number of capillaries per muscle fibre CSA and per fibre and sarcomere length were similar in destructured and normal SM muscles. Drip loss was clearly higher in destructured than in normal SM muscles. In conclusion, collagen content and solubility and thermal shrinkage temperature vary between porcine and poultry muscles. One feature in the IMCT could not be directly associated with weakening of the meat structure. Poultry breast meat is very homogenous within the species.
Resumo:
The highly dynamic remodeling of the actin cytoskeleton is responsible for most motile and morphogenetic processes in all eukaryotic cells. In order to generate appropriate spatial and temporal movements, the actin dynamics must be under tight control of an array of actin binding proteins (ABPs). Many proteins have been shown to play a specific role in actin filament growth or disassembly of older filaments. Very little is known about the proteins affecting recycling i.e. the step where newly depolymerized actin monomers are funneled into new rounds of filament assembly. A central protein family involved in the regulation of actin turnover is cyclase-associated proteins (CAP, called Srv2 in budding yeast). This 50-60 kDa protein was first identified from yeast as a suppressor of an activated RAS-allele and a factor associated with adenylyl cyclase. The CAP proteins harbor N-terminal coiled-coil (cc) domain, originally identified as a site for adenylyl cyclase binding. In the N-terminal half is also a 14-3-3 like domain, which is followed by central proline-rich domains and the WH2 domain. In the C-terminal end locates the highly conserved ADP-G-actin binding domain. In this study, we identified two previously suggested but poorly characterized interaction partners for Srv2/CAP: profilin and ADF/cofilin. Profilins are small proteins (12-16 kDa) that bind ATP-actin monomers and promote the nucleotide exchange of actin. The profilin-ATP-actin complex can be directly targeted to the growth of the filament barbed ends capped by Ena/VASP or formins. ADF/cofilins are also small (13-19 kDa) and highly conserved actin binding proteins. They depolymerize ADP-actin monomers from filament pointed ends and remain bound to ADP-actin strongly inhibiting nucleotide exchange. We revealed that the ADP-actin-cofilin complex is able to directly interact with the 14-3-3 like domain at the N-terminal region of Srv2/CAP. The C-terminal high affinity ADP-actin binding site of Srv2/CAP competes with cofilin for an actin monomer. Cofilin can thus be released from Srv2/CAP for the subsequent round of depolymerization. We also revealed that profilin interacts with the first proline-rich region of Srv2/CAP and that the binding occurs simultaneously with ADP-actin binding to C-terminal domain of Srv2/CAP. Both profilin and Srv2/CAP can promote nucleotide exchange of actin monomer. Because profilin has much higher affinity to ATP-actin than Srv2/CAP, the ATP-actin-profilin complex is released for filament polymerization. While a disruption of cofilin binding in yeast Srv2/CAP produces a severe phenotype comparable to Srv2/CAP deletion, an impairment of profilin binding from Srv2/CAP results in much milder phenotype. This suggests that the interaction with cofilin is essential for the function of Srv2/CAP, whereas profilin can also promote its function without direct interaction with Srv2/CAP. We also show that two CAP isoforms with specific expression patterns are present in mice. CAP1 is the major isoform in most tissues, while CAP2 is predominantly expressed in muscles. Deletion of CAP1 from non-muscle cells results in severe actin phenotype accompanied with mislocalization of cofilin to cytoplasmic aggregates. Together these studies suggest that Srv2/CAP recycles actin monomers from cofilin to profilin and thus it plays a central role in actin dynamics in both yeast and mammalian cells.
Resumo:
In every cell, actin is a key component involved in migration, cytokinesis, endocytosis and generation of contraction. In non-muscle cells, actin filaments are very dynamic and regulated by an array of proteins that interact with actin filaments and/or monomeric actin. Interestingly, in non-muscle cells the barbed ends of the filaments are the predominant assembly place, whereas in muscle cells actin dynamics was reported to predominate at the pointed ends of thin filaments. The actin-based thin filament pointed (slow growing) ends extend towards the middle of the sarcomere's M-line where they interact with the thick filaments to generate contraction. The actin filaments in muscle cells are organized into a nearly crystalline array and are believed to be significantly less dynamic than the ones in other cell types. However, the exact mechanisms of the sarcomere assembly and turnover are largely unknown. Interestingly, although sarcomeric actin structures are believed to be relatively non-dynamic, many proteins promoting actin dynamics are expressed also in muscle cells (e.g ADF/cofilin, cyclase-associated protein and twinfilin). Thus, it is possible that the muscle-specific isoforms of these proteins promote actin dynamics differently from their non-muscle counterparts, or that actin filaments in muscle cells are more dynamic than previously thought. To study protein dynamics in live muscle cells, I used primary cell cultures of rat cardiomyocytes. My studies revealed that a subset of actin filaments in cardiomyocyte sarcomeres displays rapid turnover. Importantly, I discovered that the turnover of actin filaments depends on contractility of the cardiomyocytes and that the contractility-induced actin dynamics plays an important role in sarcomere maturation. Together with previous studies those findings suggest that sarcomeres undergo two types of actin dynamics: (1) contractility-dependent turnover of whole filaments and (2) regulatory pointed end monomer exchange to maintain correct thin filament length. Studies involving an actin polymerization inhibitor suggest that the dynamic actin filament pool identified here is composed of filaments that do not contribute to contractility. Additionally, I provided evidence that ADF/cofilins, together with myosin-induced contractility, are required to disassemble non-productive filaments in developing cardiomyocytes. In addition, during these studies we learned that isoforms of actin monomer binding protein twinfilin, Twf-1 and Twf-2a localise to myofibrils in cardiomyocytes and may thus contribute to actin dynamics in myofibrils. Finally, in collaboration with Roberto Dominguez s laboratory we characterized a new actin nucleator in muscle cells - leiomodin (Lmod). Lmod localises towards actin filament pointed ends and its depletion by siRNA leads to severe sarcomere abnormalities in cardiomyocytes. The actin filament nucleation activity of Lmod is enhanced by interactions with tropomyosin. We also revealed that Lmod expression correlates with the maturation of myofibrils, and that it associates with sarcomeres only at relatively late stages of myofibrillogenesis. Thus, Lmod is unlikely to play an important role in myofibril formation, but rather might be involved in the second step of the filament arrangement and/or maintenance through its ability to promote tropomyosin-induced actin filament nucleation occurring at the filament pointed ends. The results of these studies provide valuable new information about the molecular mechanisms underlying muscle sarcomere assembly and turnover. These data offer important clues to understanding certain physiological and pathological behaviours of muscle cells. Better understanding of the processes occurring in muscles might help to find strategies for determining, diagnosis, prognosis and therapy in heart and skeletal muscles diseases.
Resumo:
Microneurovascular free muscle transfer with cross-over nerve grafts in facial reanimation Loss of facial symmetry and mimetic function as seen in facial paralysis has an enormous impact on the psychosocial conditions of the patients. Patients with severe long-term facial paralysis are often reanimated with a two-stage procedure combining cross-facial nerve grafting, and 6 to 8 months later with microneurovascular (MNV) muscle transfer. In this thesis, we recorded the long-term results of MNV surgery in facial paralysis and observed the possible contributing factors to final functional and aesthetic outcome after this procedure. Twenty-seven out of forty patients operated on were interviewed, and the functional outcome was graded. Magnetic resonance imaging (MRI) of MNV muscle flaps was done, and nerve graft samples (n=37) were obtained in second stage of the operation and muscle biopsies (n=18) were taken during secondary operations.. The structure of MNV muscles and nerve grafts was evaluated using histological and immunohistochemical methods ( Ki-67, anti-myosin fast, S-100, NF-200, CD-31, p75NGFR, VEGF, Flt-1, Flk-1). Statistical analysis was performed. In our studies, we found that almost two-thirds of the patients achieved good result in facial reanimation. The longer the follow-up time after muscle transfer the weaker was the muscle function. A majority of the patients (78%) defined their quality of life improved after surgery. In MRI study, the free MNV flaps were significantly smaller than originally. A correlation was found between good functional outcome and normal muscle structure in MRI. In muscle biopsies, the mean muscle fiber diameter was diminished to 40% compared to control values. Proliferative activity of satellite cells was seen in 60% of the samples and it tended to decline with an increase of follow-up time. All samples showed intramuscular innervation. Severe muscle atrophy correlated with prolonged intraoperative ischaemia. The good long-term functional outcome correlated with dominance of fast fibers in muscle grafts. In nerve grafts, the mean number of viable axons amounted to 38% of that in control samples. The grafted nerves characterized by fibrosis and regenerated axons were thinner than in control samples although they were well vascularized. A longer time between cross facial nerve grafting and biopsy sampling correlated with a higher number of viable axons. P75Nerve Growth Factor Receptor (p75NGFR) was expressed in every nerve graft sample. The expression of p75NGFR was lower in older than in younger patients. A high expression of p75NGFR was often seen with better function of the transplanted muscle. In grafted nerve Vascular Endothelial Growth Factor (VEGF) and its receptors were expressed in nervous tissue. In conclusion, most of the patients achieved good result in facial reanimation and were satisfied with the functional outcome. The mimic function was poorer in patients with longer follow-up time. MRI can be used to evaluate the structure of the microneurovascular muscle flaps. Regeneration of the muscle flaps was still going on many years after the transplantation and reinnervation was seen in all muscle samples. Grafted nerves were characterized by fibrosis and fewer, thinner axons compared to control nerves although they were well vascularized. P75NGFR and VEGF were expressed in human nerve grafts with higher intensity than in control nerves which is described for the first time.
Resumo:
Thesis focuses on mutations of POLG1 gene encoding catalytic subunit polγ-α of mitochondrial DNA polymerase gamma holoenzyme (polG) and the association of mutations with different clinical phenotypes. In addition, particular defective mutant variants of the protein were characterized biochemically in vitro. PolG-holoenzyme is the sole DNA polymerase found in mitochondria. It is involved in replication and repair of the mitochondrial genome, mtDNA. Holoenzyme also includes the accessory subunit polγ-β, which is required for the enhanced processivity of polγ-α. Defective polγ-α causes accumulation of secondary mutations on mtDNA, which leads to a defective oxidative phosphorylation system. The clinical consequences of such mutations are variable, affecting nervous system, skeletal muscles, liver and other post-mitotic tissues. The aims of the studies included: 1) Determination of the role of POLG1 mutations in neurological syndromes with features of mitochondrial dysfunction and an unknown molecular cause. 2) Development and set up of diagnostic tests for routine clinical purposes. 3) Biochemical characterization of the functional consequences of the identified polγ-α variants. Studies describe new neurological phenotypes in addition to PEO caused by POLG1 mutations, including parkinsonism, premature amenorrhea, ataxia and Parkinson s disease (PD). POLG1 mutations and polymorphisms are both common and/or potential genetic risk factors at least among the Finnish population. The major findings and applications reported here are: 1) POLG1 mutations cause parkinsonism and premature menopause in PEO families in either a recessive or a dominant manner. 2) A common recessive POLG1 mutations (A467T and W748S) in the homozygous state causes severe adult or juvenile-onset ataxia without muscular symptoms or histological or mtDNA abnormalities in muscles. 3) A common recessive pathogenic change A467T can also cause a mild dominant disease in heterozygote carriers. 4) The A467T variant shows reduced polymerase activity due to defective template binding. 5) Rare polyglutamine tract length variants of POLG1 are significantly enriched in Finnish idiopathic Parkinson s disease patients. 6) Dominant mutations are clearly restricted to the highly conserved polymerase domain motifs, whereas recessive ones are more evenly distributed along the protein. The present results highlight and confirm the new role of mitochondria in parkinsonism/Parkinson s disease and describe a new mitochondrial ataxia. Based on these results, a POLG1 diagnostic routine has been set up in Helsinki University Central Hospital (HUSLAB).
Resumo:
Breast reconstruction is performed for 10-15 % of women operated on for breast cancer. A popular method is the TRAM (transverse rectus abdominis musculocutaneous) flap formed of the patient’s own abdominal tissue, a part of one of the rectus abdominis muscles and a transverse skin-subcutis area over it. The flap can be raised as a pedicled or a free flap. The pedicled TRAM flap, based on its nondominant pedicle superior epigastric artery (SEA), is rotated to the chest so that blood flow through SEA continues. The free TRAM flap, based on its dominant pedicle deep inferior epigastric artery (DIEA), is detached from the abdomen, transferred to the chest, and DIEA and vein are anastomosed to vessels on the chest. Cutaneous necrosis is seen in 5–60 % of pedicled TRAM flaps and in 0–15 % of free TRAM flaps. This study was the first one to show with blood flow measurements that the cutaneous blood flow is more generous in free than in pedicled TRAM flaps. After this study the free TRAM flap has exceeded the pedicled flap in popularity as a breast reconstruction method, although the free flap it is technically a more demanding procedure than the pedicled TRAM flap. In pedicled flaps, a decrease in cutaneous blood flow was observed when DIEA was ligated. It seems that SEA cannot provide sufficient blood flow on the first postoperative days. The postoperative cutaneous blood flow in free TRAM flaps was more stable than in pedicled flaps. Development of cutaneous necrosis of pedicled TRAM flaps could be predicted based on intraoperative laser Doppler flowmetry (LDF) measurements. The LDF value on the contralateral skin of the flap decreased to 43 ± 7 % of the initial value after ligation of the DIEA in flaps developing cutaneous necrosis during the next week. Endothelin-1 (ET-1) is a powerful vasoconstrictory peptide secreted by vascular endothelial cells. A correlation was found between plasma ET-1 concentrations and peripheral vasoconstriction developing during and after breast reconstructions with a pedicled TRAM flap. ET-1 was not associated with the development of cutaneous necrosis. Felodipine, a vasodilating calcium channel antagonist, had no effect on plasma ET-1 concentrations, peripheral vasoconstriction or development of cutaneous necrosis in free TRAM flaps. Body mass index and thickness of abdominal were not associated with cutaneous necrosis in pedicled TRAM flaps.
Resumo:
The aim of the study was to evaluate long-term results of operative treatment for Hirschsprung's disease(HD) and internal anal sphincter achalasia. Fecal continence and quality of life were evaluated by a questionnaire in 100 adult patients who had undergone surgery for HD, during 1950-75. Fecal continence was evaluated using a numerical scoring described by Holschneider. Fifty-four of the 100 patients underwent clinical examination, rigid sigmoidoscopy and manometric evaluation. In anorectal manometry basal resting pressure(BRP)and maximal squeeze pressure(MSP) were measured and voluntary sphincter force(VSF) was calculated by subtracting the BRP from MSP. The results of operative treatment for adult HD were compared with the results of the patients operated in childhood. In adult HD the symptoms are such mild that the patients attain adolescence or even adulthood. The patients with HD and cartilage-hair-hypoplasia were specifically evaluated. The outcome of the patients with internal anal sphincter achalasia operated on by myectomy was evaluated by a questionnaire and continence was evaluated using a numerical scoring described by Holschneider. Of the 100 patients operated on for HD 38 patients had completely normal bowel habits. A normal or good continence score was found in 91 our of 100 patients. Nine patients had fair continence. One of the patients with fair continence had Down's syndrome and two were mentally retarded for other reasons. Only one patient suffered from constipation. In anorectal manometry the difference in BRP between patients with normal and good continence was statistically significant, whereas the difference between good and fair continence groups was not statistically significant. The differences on MSP and VSF between patient groups with different continence outcome were not statistically significant. The differences between patient groups and normal controls were statistically significant in BRP and MSP. In VSF there was not statistically significant difference between the patients and the normal controls. The VSF reflects the working power of the muscles including external sphincter, levator ani and gluteal muscles. The patients operated at adult age had as good continence as patients operated in childhood. The patients with HD and cartilage-hair-hypoplasia had much more morbidity and mortality than non-cartilage-hair-hypoplasia HD patients. The mortality was as high as 38%. In patients with internal anal sphincter achalasia the constipation was cured or alleviated by myectomy whereas a significant number suffered from soiling-related social problems.
Resumo:
The importance of lying behavior to dairy cows and the feasible definition of lying has attracted many studies on the subject. Cattle show both behavioral and physiological stress responses when subjected to thwarting of their lying behavior. If cows are unable to lie down they later compensate for lost lying time when possible. Environmental factors such as housing and bedding systems have been noted to affect the time spent lying, but there is usually large variation in lying time between individuals. Internal factors such as the reproductive stage, age and health of cows affect their lying time and can cause variation. However, the effect of higher milk production on behavior has not previously been illuminated. The objective of this study was to provide data applicable for the improvement of resting conditions of cows. The preference of stall surface material, differences in normal behavior per unit time and various health measures were observed. The aim was to evaluate lying behavior and cow comfort on different stall bedding materials. In addition, the effect of milk yield on behavior was examined in a tie stall experiment. The preferences for surface materials were investigated in 5 experiments using 3 surface materials with bedding manipulations. According to the results, the cows preferred abundant straw bedding and soft rubber mats. However, they showed an aversion to sand bedding. Some individuals even refused to use stalls with sand when no organic bedding material was present. However, this study was unable to determine the reason for the avoidance, as neither the sand particle size nor thermal properties appeared critical. However, previous exposure to particular surface materials increased the preference for them. The amount of straw bedding was found to be an important factor affecting the preferences for stalls, and the lying time in stalls increased when the flooring softness was improved by applying straw or by installing elastic mats. Despite sand being the least preferred flooring material in preference tests, the health of legs improved during exposure to sand-floored stalls. Moreover cows using sand were cleaner than those that used straw stalls. Thus, sand bedding entailed some health benefits despite the contradictory results of preference tests, which more strongly reflected the perceptions of individual animals. Milk yield was observed to affect behavior by reducing the lying time, possibly due to factors other than longer duration of eating. High yielding cows seemed to intensify their lying bouts, as they were observed to lie with the neck muscles relaxed sooner after lying down than lower yielding cows. In conclusion, cows were found to prefer softer stall surface materials and organic bedding material. In addition, the lying time was reduced by a high milk yield, although the lying time seemed to be important for resting. Cows might differ in the needs for their lying environment. The management of dairy cows should eliminate any unnecessary prevention of lying, as even in tie-stalls high yielding cows seem to be affected by time constraints. Adding fresh bedding material to stalls increases the comfort of any stall flooring material.
Resumo:
Myotonic dystrophies type 1 (DM1) and type 2 (DM2) are the most common forms of muscular dystrophy affecting adults. They are autosomal dominant diseases caused by microsatellite tri- or tetranucleotide repeat expansion mutations in transcribed but not translated gene regions. The mutant RNA accumulates in nuclei disturbing the expression of several genes. The more recently identified DM2 disease is less well known, yet more than 300 patients have been confirmed in Finland thus far, and the true number is believed to be much higher. DM1 and DM2 share some features in general clinical presentation and molecular pathology, yet they show distinctive differences, including disease severity and differential muscle and fiber type involvement. However, the molecular differences underlying DM1 and DM2 muscle pathology are not well understood. Although the primary tissue affected is muscle, both DMs show a multisystemic phenotype due to wide expression of the mutation-carrying genes. DM2 is particularly intriguing, as it shows an incredibly wide spectrum of clinical manifestations. For this reason, it constitutes a real diagnostic challenge. The core symptoms in DM2 include proximal muscle weakness, muscle pain, myotonia, cataracts, cardiac conduction defects and endocrinological disturbations; however, none of these is mandatory for the disease. Myalgic pains may be the most disabling symptom for decades, sometimes leading to incapacity for work. In addition, DM2 may cause major socio-economical consequences for the patient, if not diagnosed, due to misunderstanding and false stigmatization. In this thesis work, we have (I) improved DM2 differential diagnostics based on muscle biopsy, and (II) described abnormalities in mRNA and protein expression in DM1 and DM2 patient skeletal muscles, showing partial differences between the two diseases, which may contribute to muscle pathology in these diseases. This is the first description of histopathological differences between DM1 and DM2, which can be used in differential diagnostics. Two novel high-resolution applications of in situ -hybridization have been described, which can be used for direct visualization of the DM2 mutation in muscle biopsy sections, or mutation size determination on extended DNA-fibers. By measuring protein and mRNA expression in the samples, differential changes in expression patterns affecting contractile proteins, other structural proteins and calcium handling proteins in DM2 compared to DM1 were found. The dysregulation at mRNA level was caused by altered transciption and abnormal splicing. The findings reported here indicate that the extent of aberrant splicing is higher in DM2 compared to DM1. In addition, the described abnormalities to some extent correlate to the differences in fiber type involvement in the two disorders.
Resumo:
Brachial plexus birth injury (BPBI) is caused by stretching, tearing or avulsion of the C5-C8 or Th1 nerve roots during delivery. Foetal-maternal disproportion is the main reason for BPBI. The goal of this study was to find out the incidence of posterior subluxation of the humeral head during first year of life in BPBI and optimal timing of the ultrasonographic screening of the glenohumeral joint. The glenohumeral congruity and posterior subluxation of the humeral head associated to muscle atrophy were assessed and surgical treatment of the shoulder girdle as well as muscle changes in elbow flexion contracture were evaluated. The prospective, population based part of the study included all neonates born in Helsinki area during years 2003-2006. Patients with BPBI sent to the Hospital for Children and Adolescents because of decreased external rotation, internal rotation contracture or deformation of the glenohumeral joint as well as patients with elbow flexion contracture were also included in this prospective study. The incidence of BPBI was calculated to be 3.1/1000 newborns in Helsinki area. About 80% of the patients with BPBI recover totally during the follow-up within the first year of life. Permanent plexus injury at the age of one year was noted in 20% of the patients (0.64/1000 newborns). Muscle imbalance resulted in sonographically detected posterior subluxation in one third of the patients with permanent BPBI. If muscle imbalance and posterior subluxation are left untreated bony deformities will develop. All patients with internal rotation contracture of the glenohumeral joint presented muscle atrophy of the rotator cuff muscles. Especially subscapular and infraspinous muscles were affected. A correlation was found particularly between greatest thickness of subscapular muscle and subluxation of the humeral head, degree of glenoid retroversion, as well as amount of internal rotation contracture. Supinator muscle atrophy was evident among all the studied patients with elbow flexion contracture. Brachial muscle pathology seemed to be an important factor for elbow flexion contracture in BPBI. Residual dysfunction of the upper extremity may require operative treatment such as tendon lengthening, tendon transfers, relocation of the humeral head or osteotomy of the humerus. Relocation of the humeral head improved the glenohumeral congruency among patients under 5 years of age. Functional improvement without remodeling of the glenohumeral joint was achieved by other reconstructive procedures. In conclusion: Shoulder screening by US should be done to all patients with permanent BPBI at the age of 3 and 6 months. Especially atrophy of the subscapular muscle correlates with glenohumeral deformity and posterior subluxation of the humeral head, which has not been reported in previous studies. Permanent muscle changes are the main reason for diminished range of motion of the elbow and forearm. Relocation of the humeral head, when needed, should be performed under the age of 5 years.
Resumo:
Introduction: Combination antiretroviral therapy (cART) has decreased morbidity and mortality of individuals infected with human immunodeficiency virus type 1 (HIV-1). Its use, however, is associated with adverse effects which increase the patients risk of conditions such as diabetes and coronary heart disease. Perhaps the most stigmatizing side effect is lipodystrophy, i.e., the loss of subcutaneous adipose tissue (SAT) in the face, limbs and trunk while fat accumulates intra-abdominally and dorsocervically. The pathogenesis of cART-associated lipodystrophy is obscure. Nucleoside reverse transcriptase inhibitors (NRTI) have been implicated to cause lipoatrophy via mitochondrial toxicity. There is no known effective treatment for cART-associated lipodystrophy during unchanged antiretroviral regimen in humans, but in vitro data have shown uridine to abrogate NRTI-induced toxicity in adipocytes. Aims: To investigate whether i) cART or lipodystrophy associated with its use affect arterial stiffness; ii) lipoatrophic SAT is inflamed compared to non-lipoatrophic SAT; iii) abdominal SAT from patients with compared to those without cART-associated lipoatrophy differs with respect to mitochondrial DNA (mtDNA) content, adipose tissue inflammation and gene expression, and if NRTIs stavudine and zidovudine are associated with different degree of changes; iv) lipoatrophic abdominal SAT differs from preserved dorsocervical SAT with respect to mtDNA content, adipose tissue inflammation and gene expression in patients with cART-associated lipodystrophy and v) whether uridine can revert lipoatrophy and the associated metabolic disturbances in patients on stavudine or zidovudine based cART. Subjects and methods: 64 cART-treated patients with (n=45) and without lipodystrophy/-atrophy (n=19) were compared cross-sectionally. A marker of arterial stiffness, heart rate corrected augmentation index (AgIHR), was measured by pulse wave analysis. Body composition was measured by magnetic resonance imaging and dual-energy X-ray absorptiometry, and liver fat content by proton magnetic resonance spectroscopy. Gene expression and mtDNA content in SAT were assessed by real-time polymerase chain reaction and microarray. Adipose tissue composition and inflammation were assessed by histology and immunohistochemistry. Dorsocervical and abdominal SAT were studied. The efficacy and safety of uridine for the treatment of cART-associated lipoatrophy were evaluated in a randomized, double-blind, placebo-controlled 3-month trial in 20 lipoatrophic cART-treated patients. Results: Duration of antiretroviral treatment and cumulative exposure to NRTIs and protease inhibitors, but not the presence of cART-associated lipodystrophy, predicted AgIHR independent of age and blood pressure. Gene expression of inflammatory markers was increased in SAT of lipodystrophic as compared to non-lipodystrophic patients. Expression of genes involved in adipogenesis, triglyceride synthesis and glucose disposal was lower and of those involved in mitochondrial biogenesis, apoptosis and oxidative stress higher in SAT of patients with than without cART-associated lipoatrophy. Most changes were more pronounced in stavudine-treated than in zidovudine-treated individuals. Lipoatrophic SAT had lower mtDNA than SAT of non-lipoatrophic patients. Expression of inflammatory genes was lower in dorsocervical than in abdominal SAT. Neither depot had characteristics of brown adipose tissue. Despite being spared from lipoatrophy, dorsocervical SAT of lipodystrophic patients had lower mtDNA than the phenotypically similar corresponding depot of non-lipodystrophic patients. The greatest difference in gene expression between dorsocervical and abdominal SAT, irrespective of lipodystrophy status, was in expression of homeobox genes that regulate transcription and regionalization of organs during embryonal development. Uridine increased limb fat and its proportion of total fat, but had no effect on liver fat content and markers of insulin resistance. Conclusions: Long-term cART is associated with increased arterial stiffness and, thus, with higher cardiovascular risk. Lipoatrophic abdominal SAT is characterized by inflammation, apoptosis and mtDNA depletion. As mtDNA is depleted even in non-lipoatrophic dorsocervical SAT, lipoatrophy is unlikely to be caused directly by mtDNA depletion. Preserved dorsocervical SAT of patients with cART-associated lipodystrophy is less inflamed than their lipoatrophic abdominal SAT, and does not resemble brown adipose tissue. The greatest difference in gene expression between dorsocervical and abdominal SAT is in expression of transcriptional regulators, homeobox genes, which might explain the differential susceptibility of these adipose tissue depots to cART-induced toxicity. Uridine is able to increase peripheral SAT in lipoatrophic patients during unchanged cART.
Resumo:
Soft tissue sarcomas are malignant tumours of mesenchymal origin. Because of infiltrative growth pattern, simple enucleation of the tumour causes a high rate of local recurrence. Instead, these tumours should be resected with a rim of normal tissue around the tumour. Data on the adequate margin width are scarce. At Helsinki University Central Hospital (HUCH) a multidisciplinary treatment group started in 1987. Surgical resection with a wide margin (2.5 cm) is the primary aim. In case of narrower margin radiation therapy is necessary. The role of adjuvant chemotherapy remains unclear. Our aims were to study local control by the surgical margin and to develop a new prognostic tool to aid decision-making on which patients should receive adjuvant chemotherapy. Patients with soft tissue sarcoma of the extremity or the trunk wall referred to HUCH during 1987-2002 form material in Studies I and II. External validation material comes from the Lund university sarcoma registry. The smallest surgical margin of at least 2.5 centimetres yielded local control of 89 per cent at five years. Amputation rate was 9 per cent. The proposed prognostic model with necrosis, vascular invasion, size on a continuous scale, depth, location and grade worked well both in Helsinki material and in the validation material, and it also showed good calibration. Based on the present study, we recommend the smallest surgical margin of 2-3 centimetres in soft tissue sarcoma irrespective of grade. Improvement in local control was present but modest in margins wider than 1 centimetre. In cases where gaining a wider margin would lead to a considerable loss of function, smaller margin is to be considered combined to radiation therapy. Patients treated with inadequate margins should be offered radiation therapy irrespective of tumour grade. Our new prognostic model to estimate 10-year survival probability in patients with soft tissue sarcoma of the extremities or trunk wall showed good dicscrimination and calibration. For time being the prognostic model is available for scientific use and further validations. In the future, the model may aid in clinical decision-making. For operable osteosarcoma, neoadjuvant multidrug chemotherapy followed by delayed surgery and multidrug adjuvant chemotherapy is the treatment of choice. Overall survival rates at five years are approximately 75 per cent in modern trials with classical osteosarcoma. All patients diagnosed and reported to the Finnish Cancer Registry with osteosarcoma in Finland during 1971-2005 form the material in Studies III and IV. Limb-salvage rate increased from 23 per cent to 78 per cent during 1971-2005. The 10-year sarcoma-specific survival for the whole study population improved from 32 per cent to 62 per cent. It was 75 per cent for patients with a local high-grade osteosarcoma of the extremity diagnosed during 1991-2005. This study outlines the improved prognosis of osteosarcoma patients in Finland with modern chemotherapy. The 10-year survival rates are good also in an international scale. Nonetheless, their limb-salvage rate remains inferior to those seen for highly selected patient series. Overall, the centralisation of osteosarcoma treatment would most likely improve both survival and limb-salvage rates even further.