20 resultados para tissue remodelling gene

em Helda - Digital Repository of University of Helsinki


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Lupus erythematosus (LE) is a chronic, heterogeneous autoimmune disorder with abnormal immune responses, including production of autoantibodies and immune complexes. Clinical presentations of the disease range from mild cutaneous manifestations to a more generalised systemic involvement of internal organs. Cutaneous (CLE) forms are further subclassified into discoid LE (DLE), subacute cutaneous LE (SCLE) and acute cutaneous lupus erythematosus (ACLE), and may later progress to systemic disease (SLE). Both genetic and environmental factors contribute to the disease, although the precise aetiology is still elusive. Furthermore, complex gene-gene or gene-environment interactions may result in different subphenotypes of lupus. The genetic background of CLE is poorly known and only a few genes are confirmed, while the number of robust genetic associations in SLE exceeds 30. The aim of this thesis was to characterise the recruited patients clinically, and identify genetic variants conferring susceptibility to cutaneous variants of LE. Given that cutaneous and systemic disease may share underlying genetic factors, putative CLE candidate genes for genotyping were selected among those showing strong evidence of association in SLE. The correlation between relevant clinical manifestations and risk genotypes was investigated in order to find specific subphenotype associations. In addition, epistatic interactions in SLE were studied. Finally, the role of tissue degrading matrix metalloproteinases (MMP) in LE tissue injury was explored. These studies were conducted in Finnish case-control and family cohort, and Swedish case-control cohort. The clinical picture of the patients in terms of cutaneous, haematological and immunological findings resembled that described in the contemporary literature. However, the proportion of daily smokers was very high supporting the role of smoking in disease aetiology. The results confirmed that, even though clinically distinct entities, CLE and SLE share predisposing genetic factors. For the first time it was shown that known SLE susceptibility genes IRF5 and TYK2 also increase the risk of CLE. A tendency toward gene-gene interaction between these genes was found in SLE. As a remarkable novel finding, it was observed that ITGAM polymorphisms associated even more strongly to DLE than SLE, and the risk estimates were substantially higher than those reported for SLE. Several other recently identified SLE susceptibility genes showed signs of good or modest association especially in DLE. Subphenotype analyses indicated possible associations to clinical features, but marginally significant results reflected lack of sufficient power for these studies. Thorough immunohistochemical analyses of several MMPs demonstrated a role in epidermal changes and dermal tissue remodelling in diseased skin, and suggested that targeted action using selective MMP inhibitors may reduce lupus-induced damage in inflamed tissues. In conclusion, the results provide an insight into the genetics of CLE and demonstrate that genetic predisposition is at least in part shared between cutaneous and systemic variants of LE. This doctoral study has contributed IRF5, TYK2, ITGAM and several other novel genes to the so far short list of genes implicated in CLE susceptibility. Detailed examination of the function of these genes in CLE pathogenesis warrants further studies. Furthermore, the results support the need of subphenotype analysis with sample sizes large enough to reveal possible specific disease associations in order to better understand the heterogeneous nature and clinical specificities of the disease. Comprehensive analysis of clinical data suggests that smoking is an environmental triggering factor.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease with unknown aetiology and poor prognosis. IPF is characterized by alveolar epithelial damage that leads tissue remodelling and ultimately to the loss of normal lung architecture and function. Treatment has been focused on anti-inflammatory therapies, but due to their poor efficacy new therapeutic modalities are being sought. There is a need for early diagnosis and also for differential diagnostic markers for IPF and other interstitial lung diseases. The study utilized patient material obtained from bronchoalveolar lavage (BAL), diagnostic biopsies or lung transplantation. Human pulmonary fibroblast cell cultures were propagated and asbestos-induced pulmonary fibrosis in mice was used as an experimental animal model of IPF. The possible markers for IPF were scanned by immunohistochemistry, RT-PCR, ELISA and western blot. Matrix metalloproteinases (MMPs) are proteolytic enzymes that participate in tissue remodelling. Microarray studies have introduced potential markers that could serve as additional tools for the assessment of IPF and one of the most promising was MMP 7. MMP-7 protein levels were measured in the BAL fluid of patients with idiopathic interstitial lung diseases or idiopathic cough. MMP-7 was however similarly elevated in the BAL fluid of all these disorders and thus cannot be used as a differential diagnostic marker for IPF. Activation of transforming growth factor (TGF)-ß is considered to be a key element in the progression of IPF. Bone morphogenetic proteins (BMP) are negative regulators of intracellular TGF-ß signalling and BMP-4 signalling is in turn negatively regulated by gremlin. Gremlin was found to be highly upregulated in the IPF lungs and IPF fibroblasts. Gremlin was detected in the thickened IPF parenchyma and endothelium of small capillaries, whereas in non-specific interstitial pneumonia it localized predominantly in the alveolar epithelium. Parenchymal gremlin immunoreactivity might indicate IPF-type interstitial pneumonia. Gremlin mRNA levels were higher in patients with end-stage fibrosis suggesting that gremlin might be a marker for more advanced disease. Characterization of the fibroblastic foci in the IPF lungs showed that immunoreactivity to platelet-derived growth factor (PDGF) receptor-α and PDGF receptor-β was elevated in IPF parenchyma, but the fibroblastic foci showed only minor immunoreactivity to the PDGF receptors or the antioxidant peroxiredoxin II. Ki67 positive cells were also observed predominantly outside the fibroblastic foci, suggesting that the fibroblastic foci may not be composed of actively proliferating cells. When inhibition of profibrotic PDGF-signalling by imatinib mesylate was assessed, imatinib mesylate reduced asbestos-induced pulmonary fibrosis in mice as well as human pulmonary fibroblast migration in vitro but it had no effect on the lung inflammation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bone is a mineralized tissue that enables multiple mechanical and metabolic functions to be carried out in the skeleton. Bone contains distinct cell types: osteoblasts (bone-forming cells), osteocytes (mature osteoblast that embedded in mineralized bone matrix) and the osteoclasts (bone-resorbing cells). Remodelling of bone begins early in foetal life, and once the skeleton is fully formed in young adults, almost all of the metabolic activity is in this form. Bone is constantly destroyed or resorbed by osteoclasts and then replaced by osteoblasts. Many bone diseases, i.e. osteoporosis, also known as bone loss, typically reflect an imbalance in skeletal turnover. The cyclic adenosine monophosphate (cAMP) and the cyclic guanosine monophosphate (cGMP) are second messengers involved in a variety of cellular responses to such extracellular agents as hormones and neurotransmitters. In the hormonal regulation of bone metabolism, i.e. via parathyroid hormone (PTH), parathyroid hormone-related peptide (PTHrp) and prostaglandin E2 signal via cAMP. cAMP and cGMP are formed by adenylate and guanylate cyclases and are degraded by phosphodiesterases (PDEs). PDEs determine the amplitudes of cyclic nucleotide-mediated hormonal responses and modulate the duration of the signal. The activities of the PDEs are regulated by multiple inputs from other signalling systems and are crucial points of cross-talk between the pathways. Food-derived bioactive peptides are reported to express a variety of functions in vivo. The angiotensin-converting enzymes (ACEs) are involved in the regulation of the specific maturation or degradation of a number of mammalian bioactive peptides. The bioactive peptides offer also a nutriceutical and a nutrigenomic aspect to bone cell biology. The aim of this study was to investigate the influence of PDEs and bioactive peptides on the activation and the differentiation of human osteoblast cells. The profile of PDEs in human osteoblast-like cells and the effect of glucocorticoids on the function of cAMP PDEs, were investigated at the mRNA and enzyme levels. The effects of PDEs on bone formation and osteoblast gene expression were determined with chemical inhibitors and siRNAs (short interfering RNAs). The influence of bioactive peptides on osteoblast gene expression and proliferation was studied at the mRNA and cellular levels. This work provides information on how PDEs are involved in the function and the differentiation of osteoblasts. The findings illustrate that gene-specific silencing with an RNA interference (RNAi) method is useful in inhibiting, the gene expression of specific PDEs and further, PDE7 inhibition upregulates several osteogenic genes and increases bALP activity and mineralization in human mesenchymal stem cells-derived osteoblasts. PDEs appear to be involved in a mechanism by which glucocorticoids affect cAMP signaling. This may provide a potential route in the formation of glucocorticoid-induced bone loss, involving the down-regulation of cAMP-PDE. PDEs may play an important role in the regulation of osteoblastic differentiation. Isoleucine-proline-proline (IPP), a bioactive peptide, possesses the potential to increase osteoblast proliferation, differentiation and signalling.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Neuroblastoma has successfully served as a model system for the identification of neuroectoderm-derived oncogenes. However, in spite of various efforts, only a few clinically useful prognostic markers have been found. Here, we present a framework, which integrates DNA, RNA and tissue data to identify and prioritize genetic events that represent clinically relevant new therapeutic targets and prognostic biomarkers for neuroblastoma.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Calendula officinalis is grown widely as an ornamental plant across Europe. It belongs to the large. Asteraceae family. In this study, the aim was to explore the possibilities to use Calendula officinalis as a new model organism for flower development and secondary mechanism studies in Asteraceae. Tissue culture of Calendula officinalis was established using nine different cultivars. Murashige & Skoog (MS) medium with four different combinations of plant growth regulators were tested. Of all these combinations, the medium containing 1mg/l BAP, 0.1 mg/l IAA, and 1mg/l Zeatin achieved highest frequency of adventitious shoot regeneration from hypocotyl and cotyledon explants. Virus-induced gene silencing is a recent developed genetic tool for charactering the gene functions in plants, and extends the range of host plants that are not accessible for Agrobacterium transformation. Here, tobacco rattle virus (TRV)-based VIGS technique was tested in calendula (cv. Single Orange). We used TRV carrying Gerbera hybrid phytoene desaturase (PDS) gene fragment to induce PDS silencing in calendula. Vacuum infiltration and syringe infiltration methods both resulted in photo-bleaching phenotypes in leaves, bracts and petals. Loss-of-function phenotypes occurred on calendula 13 days post-infiltration. In conclusion, the data indicates that calendula explants can be regenerated through tissue culture which is a prerequisite for development of stable transformation methods. However, further optimization is still needed to improve the frequency. In addition, VIGS was applied to silence PDS marker gene expression indicating that this method has potential for gene functional studies in future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rab8 and its interacting proteins as regulators of cell polarization During the development of a multi-cellular organism, progenitor cells have to divide and migrate appropriately as well as organize their differentiation with one another, in order to produce a viable embryo. To divide, differentiate and migrate cells have to undergo polarization, a process where internal and external components such as actin, microtubules and adhesion receptors are reorganized to produce a cell that is asymmetric, with functionally different surfaces. Also in the adult organism there is a continuous need for these processes, as cells need to migrate in response to tissue damage and to fight infection. Improper regulation of cell proliferation and migration can conversely lead to disease such as cancer. GTP-binding proteins function as molecular switches by cycling between a GTP-bound (active) conformation and a GDP-bound (inactive) conformation. The Ras super-family of small GTPases are found in all eukaryotic cells. They can be functionally divided into five subfamilies. The Ras family members mainly regulate gene expression, controlling cell proliferation and differentiation. Ras was in fact the first human oncogene to be characterized, and as much as 30% of all human tumors may be directly or indirectly caused by mutations of Ras molecules The Rho family members mainly regulate cytoskeletal reorganization. Arf proteins are known to regulate vesicle budding and Rab proteins regulate vesicular transport. Ran regulates nuclear transport as well as microtubule organization during mitosis. The focus of the thesis of Katarina Hattula, is on Rab8, a small GTPase of the Rab family. Activated Rab8 has previously been shown to induce the formation of new surface extensions, reorganizing both actin and microtubules, and to have a role in directed membrane transport to cell surfaces. However, the exact membrane route it regulates has remained elusive. In the thesis three novel interactors of Rab8 are presented. Rabin8 is a Rab8-specific GEF that localizes to vesicles where it presumably recruits and activates its target Rab8. Its expression in cells leads to remodelling of actin and the formation of polarized cell surface domains. Optineurin, known to be associated with a leading cause of blindness in humans (open-angle glaucoma), is shown to interact specifically with GTP-bound Rab8. Rab8 binds to an amino-terminal region and interestingly, the Huntingtin protein binds a carboxy-terminal region of optineurin. (Aberrant Huntingtin protein is known to be the cause Huntington s disease in humans.) Co-expression of Huntingtin and optineurin enhanced the recruitment of Huntingtin to Rab8-positive vesicular structures. Furthermore, optineurin promoted cell polarization in a similar way to Rab8. A third novel interactor of Rab8 presented in this thesis is JFC1, a member of the synaptogamin-like protein (Slp) family. JFC1 interacts with Rab8 specifically in its GTP-bound form, co-localizes with endogenous Rab8 on tubular and vesicular structures, and is probably involved in controlling Rab8 membrane dynamics. Rab8 is in this thesis work clearly shown to have a strong effect on cell shape. Blocking Rab8 activity by expression of Rab8 RNAi, or by expressing the dominant negative Rab8 (T22N) mutant leads to loss of cell polarity. Conversely, cells expressing the constitutively active Rab8 (Q67L) mutant exhibit a strongly polarized phenotype. Experiments in live cells show that Rab8 is associated with macropinosomes generated at ruffling areas of the membrane. These macropinosomes fuse with or transform into tubules that move toward the cell centre, from where they are recycled back to the leading edge to participate in protrusion formation. The biogenesis of these tubules is shown to be dependent on both actin and microtubule dynamics. The Rab8-specific membrane route studied contained several markers known to be internalized and recycled (1 integrin, transferrin, transferrin receptor, cholera toxin B subunit (CTxB), and major histocompatibility complex class I protein (MHCI)). Co-expression studies revealed that Rab8 localization overlaps with that of Rab11 and Arf6. Rab8 is furthermore clearly functionally linked to Arf6. The data presented in this thesis strongly suggests a role for Rab8 as a regulator for a recycling compartment, which is involved in providing structural and regulatory components to the leading edge to participate in protrusion formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mulibrey nanism is a hereditary developmental disorder, characterized by prenatal onset growth failure without postnatal catch-up growth, distinctive craniofacial features, progressive cardiopathy and failure of sexual maturation. In addition, the patients develop insulin resistance syndrome and type 2 diabetes and they have an increased risk of developing tumors. The TRIM37 gene that underlies mulibrey nanism encodes for a member of the tripartite motif (TRIM) protein family. The physiological function of TRIM37 and the pathogenetic mechanisms leading from TRIM37 dysfunction to the mulibrey nanism phenotype are unknown. However, TRIM37 localizes at least partially to peroxisomes, and possesses ubiquitin E3-ligase activity. Thus, it may mediate ubiquitin dependent protein degradation, suggesting that accumulation of yet unknown substrate proteins may underlie the disease pathogenesis. In this study, the TRIM37 gene was characterized in detail. A transcription initiation window, with several separate transcription start sites, was identified and the putative promoter region immediately upstream from the transcription initiation window was shown to possess basal promoter activity. Further, several alternative splice variants of the gene were identified, including a highly expressed testis specific variant, encoding for an identical protein product with the main transcript. Expression of TRIM37 mRNA was detected in several different tissues, with highest expression seen in testis and in brain, when the expression patterns of the two major transcripts in different human tissues were studied by quantitative real-time PCR. Several mulibrey nanism patients were studied and thirteen novel mutations in TRIM37 were found, including three mutations (p.Gly322Val, p.Cys109Ser, p.Glu271_Ser287), that are likely to express mutant TRIM37 proteins. These mutations were further shown to alter the subcellular localization of the mutant proteins. Most of the mulibrey nanism associated mutations however, lead to premature termination codons and degradation of mRNA. All the TRIM37 mutations identified to date predict loss-of-function alleles, and thus no phenotype-genotype correlation is seen among the patients. In order to understand the pathogenetic mechanisms underlying mulibrey nanism, an animal model for the disorder is needed. For the development of a Trim37 knock-out mouse, the mouse Trim37 gene was characterized. Alternative splice variants, were identified, including a testis specific variant predicting a longer protein product. Further, a strictly tissue and cell-specific pattern of Trim37 expression was observed in developing and adult mouse tissues, when studied by immunohistochemical methods. This distribution of Trim37 expression in mouse tissues is in agreement with the clinical findings in human mulibrey nanism patients. This thesis work gives new tools for the diagnostics of mulibrey nanism as well as for studying the molecular pathogenesis behind this interesting disorder.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heredity explains a major part of the variation in calcium homeostasis and bone strength, and the susceptibility to osteoporosis is polygenetically regulated. Bone phenotype results from the interplay between lifestyle and genes, and several nutritional factors modulate bone health throughout life. Thus, nutrigenetics examining the genetic variation in nutrient intake and homeostatic control is an important research area in the etiology of osteoporosis. Despite continuing progress in the search for candidate genes for osteoporosis, the results thus far have been inconclusive. The main objective of this thesis was to investigate the associations of lactase, vitamin D receptor (VDR), calcium sensing receptor (CaSR) and parathyroid hormone (PTH) gene polymorphisms and lifestyle factors and their interactions with bone health in Finns at varying stages of the skeletal life span. Markers of calcium homeostasis and bone remodelling were measured from blood and urine samples. Bone strength was measured at peripheral and central bone sites. Lifestyle factors were assessed with questionnaires and interviews. Genetic lactase non-persistence (the C/C-13910 genotype) was associated with lower consumption of milk from childhood, predisposing females in particular to inadequate calcium intake. Consumption of low-lactose milk and milk products was shown to decrease the risk for inadequate calcium intake. In young adulthood, bone loss was more common in males than in females. Males with the lactase C/C-13910 genotype may be more susceptible to bone loss than males with the other lactase genotypes, although calcium intake predicts changes in bone mass more than the lactase genotype. The BsmI and FokI polymorphisms of the VDR gene were associated with bone mass in growing adolescents, but the associations weakened with age. In young adults, the A986S polymorphism of the calcium sensing receptor gene was associated with serum ionized calcium concentrations, and the BstBI polymorphism of the parathyroid gene was related to bone strength. The FokI polymorphism and sodium intake showed an interaction effect on urinary calcium excretion. A novel gene-gene interaction between the VDR FokI and PTH BstBI gene polymorphisms was found in the regulation of PTH secretion and urinary calcium excretion. Further research should be carried out with more number of Finns at varying stages of the skeletal life span and more detailed measurements of bone strength. Research should concern mechanisms by which genetic variants affect calcium homeostasis and bone strength, and the role of diet-gene and gene-gene interactions in the pathogenesis of osteoporosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The actin cytoskeleton is essential for a large variety of cell biological processes. Actin exists in either a monomeric or a filamentous form, and it is very important for many cellular functions that the local balance between these two actin populations is properly regulated. A large number of proteins participate in the regulation of actin dynamics in the cell, and twinfilin, one of the proteins examined in this thesis, belongs to this category. The second level of regulation involves proteins that crosslink or bundle actin filaments, thereby providing the cell with a certain shape. α-Actinin, the second protein studied, mainly acts as an actin crosslinking protein. Both proteins are conserved in organisms ranging from yeast to mammals. In this thesis, the roles of twinfilin and α-actinin in development were examined using Drosophila melanogaster as a model organism. Twinfilin is an actin monomer binding protein that is structurally related to cofilin. In vitro, twinfilin reduces actin polymerisation by sequestering actin monomers. The Drosophila twinfilin (twf) gene was identified and found to encode a protein functionally similar to yeast and mammalian twinfilins. A strong hypomorphic twf mutation was identified, and flies homozygous for this allele were viable and fertile. The adult twf mutant flies displayed reduced viability, a rough eye phenotype and severely malformed bristles. The shape of the adult bristle is determined by the actin bundles that are regularly spaced around the perimeter of the developing pupal bristles. Examination of the twf pupal bristles revealed an increased level of filamentous actin, which in turn resulted in splitting and displacement of the actin bundles. The bristle defect was rescued by twf overexpression in developing bristles. The Twinfilin protein was localised at sites of actin filament assembly, where it was required to limit actin polymerisation. A genetic interaction between twinfilin and twinstar (the gene encoding Cofilin) was detected, consistent with the model predicting that both proteins act to limit the amount of filamentous actin. α-Actinin has been implicated in several diverse cell biological processes. In Drosophila, the only function for α-actinin yet known is in the organisation of the muscle sarcomere. Muscle and non-muscle cells utilise different α-actinin isoforms, which in Drosophila are produced by alternative splicing of a single gene. In this work, novel α-actinin deletion alleles, including ActnΔ233, were generated, which specifically disrupted the transcript encoding the non-muscle α-actinin isoform. Nevertheless, ActnΔ233 homozygous mutant flies were viable and fertile with no obvious defects. By comparing α-actinin protein distribution in wild type and ActnΔ233 mutant animals, it could be concluded that non-muscle α-actinin is the only isoform expressed in young embryos, in the embryonic central nervous system and in various actin-rich structures of the ovarian germline cells. In the ActnΔ233 mutant, α-actinin was detected not only in muscle tissue, but also in embryonic epidermal cells and in certain follicle cell populations in the ovaries. The population of α-actinin protein present in non-muscle cells of the ActnΔ233 mutant is referred to as FC-α-actinin (Follicle Cell). The follicular epithelium in the Drosophila ovary is a well characterised model system for studies on patterning and morphogenesis. Therefore, α-actinin expression, regulation and function in this tissue were further analysed. Examination of the α-actinin localisation pattern revealed that the basal actin fibres of the main body follicle cells underwent an organised remodelling during the final stages of oogenesis. This involved the assembly of a transient adhesion site in the posterior of the cell, in which α-actinin and Enabled (Ena) accumulated. Follicle cells genetically manipulated to lack all α-actinin isoforms failed to remodel their cytoskeleton and translocate Ena to the posterior of the cell, while the actin fibres as such were not affected. Neither was epithelial morphogenesis disrupted. The reorganisation of the basal actin cytoskeleton was also disturbed following ectopic expression of Decapentaplegic (Dpp) or as a result of a heat shock. At late oogenesis, the main body follicle cells express both non-muscle α-actinin and FC-α-actinin, while the dorsal anterior follicle cells express only non-muscle α-actinin. The dorsal anterior cells are patterned by the Dpp and Epidermal growth factor receptor (EGFR) signalling pathways, and they will ultimately secrete the dorsal appendages of the egg. Experiments involving ectopic activation of EGFR and Dpp signalling showed that FC-α-actinin is negatively regulated by combined EGFR and Dpp signalling. Ubiquitous overexpression of the adult muscle-specific α-actinin isoform induced the formation of aberrant actin bundles in migrating follicle cells that did not normally express FC-α-actinin, provided that the EGFR signalling pathway was activated in the cells. Taken together, this work contributes new data to our knowledge of α-actinin function and regulation in Drosophila. The cytoskeletal remodelling shown to depend on α-actinin function provides the first evidence that α-actinin has a role in the organisation of the cytoskeleton in a non-muscle tissue. Furthermore, the cytoskeletal remodelling constitutes a previously undescribed morphogenetic event, which may provide us with a model system for in vivo studies on adhesion dynamics in Drosophila.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The time of the large sequencing projects has enabled unprecedented possibilities of investigating more complex aspects of living organisms. Among the high-throughput technologies based on the genomic sequences, the DNA microarrays are widely used for many purposes, including the measurement of the relative quantity of the messenger RNAs. However, the reliability of microarrays has been strongly doubted as robust analysis of the complex microarray output data has been developed only after the technology had already been spread in the community. An objective of this study consisted of increasing the performance of microarrays, and was measured by the successful validation of the results by independent techniques. To this end, emphasis has been given to the possibility of selecting candidate genes with remarkable biological significance within specific experimental design. Along with literature evidence, the re-annotation of the probes and model-based normalization algorithms were found to be beneficial when analyzing Affymetrix GeneChip data. Typically, the analysis of microarrays aims at selecting genes whose expression is significantly different in different conditions followed by grouping them in functional categories, enabling a biological interpretation of the results. Another approach investigates the global differences in the expression of functionally related groups of genes. Here, this technique has been effective in discovering patterns related to temporal changes during infection of human cells. Another aspect explored in this thesis is related to the possibility of combining independent gene expression data for creating a catalog of genes that are selectively expressed in healthy human tissues. Not all the genes present in human cells are active; some involved in basic activities (named housekeeping genes) are expressed ubiquitously. Other genes (named tissue-selective genes) provide more specific functions and they are expressed preferably in certain cell types or tissues. Defining the tissue-selective genes is also important as these genes can cause disease with phenotype in the tissues where they are expressed. The hypothesis that gene expression could be used as a measure of the relatedness of the tissues has been also proved. Microarray experiments provide long lists of candidate genes that are often difficult to interpret and prioritize. Extending the power of microarray results is possible by inferring the relationships of genes under certain conditions. Gene transcription is constantly regulated by the coordinated binding of proteins, named transcription factors, to specific portions of the its promoter sequence. In this study, the analysis of promoters from groups of candidate genes has been utilized for predicting gene networks and highlighting modules of transcription factors playing a central role in the regulation of their transcription. Specific modules have been found regulating the expression of genes selectively expressed in the hippocampus, an area of the brain having a central role in the Major Depression Disorder. Similarly, gene networks derived from microarray results have elucidated aspects of the development of the mesencephalon, another region of the brain involved in Parkinson Disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The neuroectodermal tissue close to the midbrain hindbrain boundary (MHB) is an important secondary organizer in the developing neural tube. This so-called isthmic organizer (IsO) regulates cellular survival, patterning and proliferation in the midbrain (Mb) and rhombomere 1 (R1) of the hindbrain. Signaling molecules of the IsO, such as fibroblast growth factor 8 (FGF8) and WNT1 are expressed in distinct bands of cells around the MHB. It has been previously shown that FGF-receptor 1 (FGFR1) is required for the normal development of this brain region in the mouse embryo. In the present study, we have compared the gene expression profiles of wild-type and Fgfr1 mutant embryos. We show that the loss of Fgfr1 results in the downregulation of several genes expressed close to the MHB and in the disappearance of gene expression gradients in the midbrain and R1. Our microarray screen identified several previously uncharacterized genes which may participate in the development of midbrain R1 region. Our results also show altered neurogenesis in the midbrain and R1 of the Fgfr1 mutants. Interestingly, the neuronal progenitors in midbrain and R1 show different responses to the loss of signaling through FGFR1. As Wnt1 expression at the MHB region requires the FGF signaling pathway, WNT target genes, including Drapc1, were also identified in our screen. The microarray data analysis also suggested that the cells next to the midbrain hindbrain boundary express distinct cell cycle regulators. We showed that the cells close to the border appeared to have unique features. These cells proliferate less rapidly than the surrounding cells. Unlike the cells further away from the boundary, these cells express Fgfr1 but not the other FGF receptors. The slowly proliferating boundary cells are necessary for development of the characteristic isthmic constriction. They may also contribute to compartmentalization of this brain region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human parvovirus B19 is a minute ssDNA virus causing a wide variety of diseases, including erythema infectiosum, arthropathy, anemias, and fetal death. After primary infection, genomic DNA of B19 has been shown to persist in solid tissues of not only symptomatic but also of constitutionally healthy, immunocompetent individuals. In this thesis, the viral DNA was shown to persist as an apparently intact molecule of full length, and without persistence-specific mutations. Thus, although the mere presence of B19 DNA in tissue can not be used as a diagnostic criterion, a possible role in the pathogenesis of diseases e.g. through mRNA or protein production can not be excluded. The molecular mechanism, the host-cell type and the possible clinical significance of B19 DNA tissue persistence are yet to be elucidated. In the beginning of this work, the B19 genomic sequence was considered highly conserved. However, new variants were found: V9 was detected in 1998 in France, in serum of a child with aplastic crisis. This variant differed from the prototypic B19 sequences by ~10 %. In 2002 we found, persisting in skin of constitutionally healthy humans, DNA of another novel B19 variant, LaLi. Genetically this variant differed from both the prototypic sequences and the variant V9 also by ~10%. Simultaneously, B19 isolates with DNA sequences similar to LaLi were introduced by two other groups, in the USA and France. Based on phylogeny, a classification scheme based on three genotypes (B19 types 1-3) was proposed. Although the B19 virus is mainly transmitted via the respiratory route, blood and plasma-derived products contaminated with high levels of B19 DNA have also been shown to be infectious. The European Pharmacopoeia stipulates that, in Europe, from the beginning of 2004, plasma pools for manufacture must contain less than 104 IU/ml of B19 DNA. Quantitative PCR screening is therefore a prerequisite for restriction of the B19 DNA load and obtaining of safe plasma products. Due to the DNA sequence variation among the three B19 genotypes, however, B19 PCR methods might fail to detect the new variants. We therefore examined the suitability of the two commercially available quantitative B19 PCR tests, LightCycler-Parvovirus B19 quantification kit (Roche Diagnostics) and RealArt Parvo B19 LC PCR (Artus), for detection, quantification and differentiation of the three B19 types known, including B19 types 2 and 3. The former method was highly sensitive for detection of the B19 prototype but was not suitable for detection of types 2 and 3. The latter method detected and differentiated all three B19 virus types. However, one of the two type-3 strains was detected at a lower sensitivity. Then, we assessed the prevalence of the three B19 virus types among Finnish blood donors, by screening pooled plasma samples derived from >140 000 blood-donor units: none of the pools contained detectable levels of B19 virus types 2 or 3. According to the results of other groups, B19 type 2 was absent also among Danish blood-donors, and extremely rare among symptomatic European patients. B19 type 3 has been encountered endemically in Ghana and (apparently) in Brazil, and sporadical cases have been detected in France and the UK. We next examined the biological characteristics of these virus types. The p6 promoter regions of virus types 1-3 were cloned in front of a reporter gene, the constructs were transfected into different cell lines, and the promoter activities were measured. As a result, we found that the activities of the three p6 promoters, although differing in sequence by >20%, were of equal strength, and most active in B19-permissive cells. Furthermore, the infectivity of the three B19 types was examined in two B19-permissive cell lines. RT-PCR revealed synthesis of spliced B19 mRNAs, and immunofluorescence verified the production of NS1 and VP proteins in the infected cells. These experiments suggested similar host-cell tropism and showed that the three virus types are strains of the same species, i.e. human parvovirus B19. Last but not least, the sera from subjects infected in the past either with B19 type 1 or type 2 (as evidenced by tissue persistence of the respective DNAs), revealed in VP1/2- and VP2-EIAs a 100 % cross-reactivity between virus types 1 and 2. These results, together with similar studies by others, indicate that the three B19 genotypes constitute a single serotype.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Obesity is closely associated with insulin resistance, which is a pathophysiologic condition contributing to the important co-morbidities of obesity, such as the metabolic syndrome and type 2 diabetes mellitus. In obese subjects, adipose tissue is characterized by inflammation (macrophage infiltration, increased expression insulin resistance genes and decreased expression of insulin sensitivity genes). Increased liver fat, without excessive alcohol consumption, is defined as non-alcoholic fatty liver disease (NAFLD) and also associated with obesity and insulin resistance. It is unknown whether and how insulin resistance is associated with altered expression of adipocytokines (adipose tissue-derived signaling molecules), and whether adipose tissue inflammation and NAFLD coexist independent of obesity. Genetic factors could explain variation in liver fat independent of obesity but the heritability of NAFLD is unknown. AIMS: To determine whether acute regulation of adipocytokine expression by insulin in adipose tissue is altered in obesity. To investigate the relationship between adipose tissue inflammation and liver fat content independent of obesity. To assess the heritability of serum alanine aminotransferase (ALT) activity, a surrogate marker of liver fat. METHODS: 55 healthy normal-weight and obese volunteers were recruited. Subcutaneous adipose tissue biopsies were obtained for measurement of gene expression before and during 6 hours of euglycemic hyperinsulinemia. Liver fat content was measured by proton magnetic resonance spectroscopy, and adipose tissue inflammation was assessed by gene expression, immunohistochemistry and lipidomics analysis. Genetic factors contributing to serum ALT activity were determined in 313 twins by statistical heritability modeling. RESULTS: During insulin infusion the expression of insulin sensitivity genes remains unchanged, while the expression of insulin resistance genes increases in obese/insulin-resistant subjects compared to insulin-sensitive subjects. Adipose tissue inflammation is associated with liver fat content independent of obesity. Adipose tissue of subjects with high liver fat content is characterized infiltrated macrophages and increased expression of inflammatory genes, as well as by increased concentrations of ceramides compared to equally obese subjects with normal liver fat. A significant heritability for serum ALT activity was verified. CONCLUSIONS: Effects of insulin infusion on adipose tissue gene expression in obese/insulin-resistant subjects are not only characterized by hyporesponse of insulin sensitivity genes but also by hyperresponse of insulin resistance and inflammatory genes. This suggests that in obesity, the impaired insulin action contributes or self-perpetuates alterations in adipocytokine expression in adipose tissue. Adipose tissue inflammation is increased in subjects with high liver fat compared to equally obese subjects with normal liver fat content. Concentrations of ceramides, the putative mediators of insulin resistance, are increased in adipose tissue in subjects with high liver fat. Genetic factors contribute significantly to variation in serum ALT activity, a surrogate marker of liver fat. These data imply that adipose tissue inflammation and increased liver fat content are closely interrelated, and determine insulin resistance even independent of obesity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sjögren s syndrome (SS) is a common autoimmune disease affecting the lacrimal and salivary glands. SS is characterized by a considerable female predominance and a late age of onset, commonly at the time of adreno- and menopause. The levels of the androgen prohormone dehydroepiandrosterone-sulphate (DHEA-S) in the serum are lower in patients with SS than in age- and sex-matched healthy control subjects. The eventual systemic effects of low androgen levels in SS are not currently well understood. Basement membranes (BM) are specialized layers of extracellular matrix and are composed of laminin (LM) and type IV collagen matrix networks. BMs deliver messages to epithelial cells via cellular LM-receptors including integrins (Int) and Lutheran blood group antigen (Lu). The composition of BMs and distribution of LM-receptors in labial salivary glands (LSGs) of normal healthy controls and patients with SS was assessed. LMs have complex and highly regulated distribution in LSGs. LMs seem to have specific tasks in the dynamic regulation of acinar cell function. LM-111 is important for the normal acinar cell differentiation and its expression is diminished in SS. Also LM-211 and -411 seem to have some acinar specific functional tasks in LSGs. LM-311, -332 and -511 seem to have more general structure maintaining and supporting roles in LSGs and are relatively intact also in SS. Ints α3β1, α6β1, α6β4 and Lu seem to supply structural basis for the firm attachment of epithelial cells to the BM in LSGs. The expression of Ints α1β1 and α2β1 differed clearly from other LM-receptors in that they were found almost exclusively around the acini and intercalated duct cells in salivons suggesting some type of acinar cell compartment-specific or dominant function. Expression of these integrins was lower in SS compared to healthy controls suggesting that the LM-111 and -211-to-Int α1β1 and α2β1 interactions are defective in SS and are crucial to the maintenance of the acini in LSGs. DHEA/DHEA-S concentration in serum and locally in saliva of patients with SS seems to have effects on the salivary glands. These effects were first detected using the androgen-dependent CRISP-3 protein, the production and secretion of which were clearly diminished in SS. This might be due to the impaired function of the intracrine DHEA prohormone metabolizing machinery, which fails to successfully convert DHEA into its active metabolites in LSGs. The progenitor epithelial cells from the intercalated ductal area of LSGs migrate to the acinar compartment and then undergo a phenotype change into secretory acinar cells. This migration and phenotype change seem to be regulated by the LM-111-to-Int α1β1/Int α2β1 interactions. Lack of these interactions could be one factor limiting the normal remodelling process. Androgens are effective stimulators of Int α1β1 and α2β1 expression in physiologic concentrations. Addition of DHEA to the culture medium had effective stimulating effect on the Int α1β1 and α2β1 expression and its effect may be deficient in the LSGs of patients with SS.