58 resultados para stellate cells
em Helda - Digital Repository of University of Helsinki
Resumo:
Fumonisin B1 (FB1) is a mycotoxin produced by the fungus Fusarium verticillioides, which commonly infects corn and other agricultural products. Fusarium species can also be found in moisture-damaged buildings, and therefore there may also be human exposure to Fusarium mycotoxins, including FB1. FB1 affects the metabolism of sphingolipids by inhibiting the enzyme ceramide synthase. It is neuro-, hepato- and nephrotoxic, and it is classified as possibly carcinogenic to humans. This study aimed to clarify the mechanisms behind FB1-induced neuro- and immunotoxicity. Four neural and glial cell lines of human, rat and mouse origin were exposed to graded doses of FB1 and the effects on the production of reactive oxygen species, lipid peroxidation, intracellular glutathione levels, cell viability and apoptosis were investigated. Furthermore, the effects of FB1, alone or together with lipopolysaccharide (LPS), on the mRNA and protein expression levels of different cytokines and chemokines were studied in human dendritic cells (DC). FB1 induced oxidative stress and cell death in all cell lines studied. Generally, the effects were only seen after prolonged exposure at 10 and 100 µM of FB1. Signs of apoptosis were also seen in all four cell lines. The sensitivities of the cell lines used in this study towards FB1 may be classified as human U-118MG glioblastoma > mouse GT1-7 hypothalamic > rat C6 glioblastoma > human SH-SY5Y neuroblastoma cells. When comparing cell lines of human origin, it can be concluded that glial cells seem to be more sensitive towards FB1 toxicity than those of neural origin. After exposure to FB1, significantly increased levels of the cytokine interferon-γ (IFNγ) were detected in human DC. This observation was further confirmed by FB1-induced levels of the chemokine CXCL9, which is known to be regulated by IFNγ. During co-exposure of DC to both LPS and FB1, significant inhibitions of the LPS-induced levels of the pro-inflammatory cytokines interleukin-6 (IL-6) and IL-1β, and their regulatory chemokines CCL3 and CCL5 were observed. FB1 can thus affect immune responses in DC, and therefore, it is rather likely that it also affects other types of cells participating in the immune defence system. When evaluating the toxicity potential of FB1, it is important to consider the effects on different cell types and cell-cell interactions. The results of this study represent new information, especially about the mechanisms behind FB1-induced oxidative stress, apoptosis and immunotoxicity, as well as the varying sensitivities of different cell types towards FB1.
Resumo:
In epithelial-mesenchymal transition (EMT), epithelial cells acquire traits typical for mesenchymal cells, dissociate their cell-cell junctions and gain the ability to migrate. EMT is essential during embryogenesis, but may also mediate cancer progression. Basement membranes are sheets of extracellular matrix that support epithelial cells. They have a major role in maintaining the epithelial phenotype and, in cancer, preventing cell migration, invasion and metastasis. Laminins are the main components of basement membranes and may actively contribute to malignancy. We first evaluated the differences between cell lines obtained from oral squamous cell carcinoma and its recurrence. As the results indicated a change from epithelial to fibroblastoid morphology, E-cadherin to N-cadherin switch, and change in expression of cytokeratins to vimentin intermediate filaments, we concluded that these cells had undergone EMT. We further induced EMT in primary tumour cells to gain knowledge of the effects of transcription factor Snail in this cell model. The E-cadherin repressors responsible for the EMT in these cells were ZEB-1, ZEB-2 and Snail, and ectopic expression of Snail was able to augment the levels of ZEB-1 and ZEB-2. We produced and characterized two monoclonal antibodies that specifically recognized Snail in cell lines and patient samples. By immunohistochemistry, Snail protein was found in mesenchymal tissues during mouse embryonal development, in fibroblastoid cells of healing skin wounds and in fibromatosis and sarcoma specimens. Furthermore, Snail localized to the stroma and borders of tumour cell islands in colon adenocarcinoma, and in laryngeal and cervical squamous cell carcinomas. Immunofluorescence labellings, immunoprecipitations and Northern and Western blots showed that EMT induced a progressive downregulation of laminin-332 and laminin-511 and, on the other hand, an induction of mesenchymal laminin-411. Chromatin immunoprecipitation revealed that Snail could directly bind upstream to the transcription start sites of both laminin α5 and α4 chain genes, thus regulating their expression. The levels of integrin α6β4, a receptor for laminin-332, as well as the hemidesmosomal complex proteins HD1/plectin and BP180 were downregulated in EMT-experienced cells. The expression of Lutheran glycoprotein, a specific receptor for laminin-511, was diminished, whereas the levels of integrins α6β1 and α1β1 and integrin-linked kinase were increased. In quantitative cell adhesion assays, the cells adhered potently to laminin-511 and fibronectin, but only marginally to laminin-411. Western blots and immunoprecipitations indicated that laminin-411 bound to fibronectin and could compromise cell adhesion to fibronectin in a dose-dependent manner. EMT induced a highly migratory and invasive tendency in oral squamous carcinoma cells. Actin-based adhesion and invasion structures, podosomes and invadopodia, were detected in the basal cell membranes of primary tumour and spontaneously transformed cancer cells, respectively. Immunofluorescence labellings showed marked differences in their morphology, as podosomes organized a ring structure with HD1/plectin, αII-spectrin, talin, focal adhesion kinase and pacsin 2 around the core filled with actin, cortactin, vinculin and filamin A. Invadopodia had no division between ring and core and failed to organize the ring proteins, but instead assembled tail-like, narrow actin cables that showed a talin-tensin switch. Time-lapse live-cell imaging indicated that both podosomes and invadopodia were long-lived entities, but the tails of invadopodia vigorously propelled in the cytoplasm and were occasionally released from the cell membrane. Invadopodia could also be externalized outside the cytoplasm, where they still retained the ability to degrade matrix. In 3D confocal imaging combined with in situ gelatin zymography, the podosomes of primary tumour cells were large, cylindrical structures that increased in time, whereas the invadopodia in EMT-driven cells were smaller, but more numerous and degraded the underlying matrix in significantly larger amounts. Fluorescence recovery after photobleaching revealed that the substructures of podosomes were replenished more rapidly with new molecules than those of invadopodia. Overall, our results indicate that EMT has a major effect on the transcription and synthesis of both intra- and extracellular proteins, including laminins and their receptors, and on the structure and dynamics of oral squamous carcinoma cells.
Resumo:
The repair of corneal wounds requires both epithelial cell adhesion and migration. Basement membrane (BM) and extracellular matrix (ECM) proteins function in these processes via integrin and non-integrin receptors. We have studied the adhesion, spreading and migration of immortalized human corneal epithelial (HCE) cells and their interactions with the laminins (Lms), fibronectins and tenascins produced. Human corneal BM expresses Lms-332 and -511, while Lm-111 was not found in these experiments. HCE cells produced both processed and unprocessed Lm-332, whereas neither Lm-111 nor Lm-511 was produced. Because HCE cells did not produce Lm-511, although it was present in corneal BM, we suggest that Lm-511 is produced by stromal keratocytes. The adhesion of HCE cells to Lms-111, -332 and -511 was studied first by determining the receptor composition of HCE cells and then by using quantitative cell adhesion assays. Immunofluorescence studies revealed the presence of integrin α2, α3, α6, β1 and β4 subunits. Among the non-integrin receptors, Lutheran (Lu) was found on adhering HCE cells. The cells adhered via integrin α3β1 to both purified human Lms-332 and -511 as well as to endogenous Lm-332. However, only integrin β1 subunit functioned in HCE cell adhesion to mouse Lm-111. The adhesion of HCE cells to Lm-511 was also mediated by Lu. Since Lm-511 did not induce Lu into focal adhesions in HCE cells, we suggest that Lm-511 serves as an ECM ligand enabling cell motility. HCE cells produced extradomain-A fibronectin, oncofetal fibronectin and tenascin-C (Tn-C), which are also found during corneal wound healing. Monoclonal antibodies (MAbs) against integrins α5β1 and αvβ6 as well as the arginine-glycine-aspartic acid (RGD) peptide inhibited the adhesion of HCE cells to fibronectin. Although the cells did not adhere to Tn-C, they adhered to the fibronectin/Tn-C coat and were then more efficiently inhibited by the function-blocking MAbs and RGD peptide. During the early adhesion, HCE cells codeposited Lm-332 and the large subunit of tenascin-C (Tn-CL) beneath the cells via the Golgi apparatus and microtubules. Integrin β4 subunit, which is a hemidesmosomal component, did not mediate the early adhesion of HCE cells to Lm-332 or Lm-332/Tn-C. Based on these results, we suggest that the adhesion of HCE cells is initiated by Lm-332 and modulated by Tn-CL, as it has been reported to prevent the assembly of hemidesmosomes. Thereby, Tn-CL functions in the motility of HCE cells during wound healing. The different distribution of processed and unprocessed Lm-332 in adhering, spreading and migrating HCE cells suggests a distinct role for these isoforms. We conclude that the processed Lm-332 functions in cell adhesion, whereas the unprocessed Lm-332 participates in cell spreading and migration.
Resumo:
The Enamel matrix derivative Emdogain® (EMD) is a commercially available tissue extract preparation of porcine enamel origin. Studies have shown EMD to be clinically useful in promoting periodontal regeneration. EMD has been widely used in periodontal therapy for over ten years, but the mechanism of its action and the exact composition are not completely clear. EMD is predominantly amelogenin (>90%). However, unlike amelogenin, EMD has a number of growth factor-like effects and it has been shown to enhance the proliferation, migration and other cellular functions of periodontal ligament fibroblasts and osteoblasts. In contrast, the effects of EMD on epithelial cell lines and in particular on oral malignant cells have not been adequately studied. In addition, EMD has effects on the production of cytokines by several oral cell lines and the product is in constant interaction with different oral enzymes. Regardless of the various unknown properties of EMD, it is said to be clinically safe in regenerative procedures, also in medically compromised patients. The aim of the study was to examine whether gingival crevicular fluid (GCF), which contains several different proteolysis enzymes, could degrade EMD and alter its biological functions. In addition, the objective was to study the effects of EMD on carcinogenesis-related factors, in particular MMPs, using in vitro and in vivo models. This study also aimed to contribute to the understanding of the composition of EMD. GCF was capable of degrading EMD, depending on the periodontal status, with markedly more degradation in all states of periodontal disease compared to healthy controls. EMD was observed to stimulate the migration of periodontal ligament fibroblasts (PLF), whereas EMD together with GCF could not stimulate this proliferation. In addition, recombinant amelogenin, the main component of EMD, decreased the migration of PLFs. A comparison of changes induced by EMD and TGF-β1 in the gene profiles of carcinoma cells showed TGF-β1 to regulate a greater number of genes than EMD. However, both of the study reagents enhanced the expression of MMP-10 and MMP-9. Furthermore, EMD was found to induce several factors closely related to carcinogenesis on gene, protein, cell and in vivo levels. EMD enhanced the production of MMP-2, MMP-9 and MMP-10 proteins by cultured carcinoma cells. In addition, EMD stimulated the migration and in vitro wound closure of carcinoma cells. EMD was also capable of promoting metastasis formation in mice. In conclusion, the diseased GCF, containing various proteases, causes degradation of EMD and decreased proliferation of PLFs. Thus, this in vitro study suggests that the regenerative effect of EMD may decrease due to proteases present in periodontal tissues during the inflammation and healing of the tissues in vivo. Furthermore, EMD was observed to enhance several carcinoma-related factors and in particular the production of MMPs by benign and malignant cell lines. These findings suggest that the clinical safety of EMD with regard to dysplastic mucosal lesions should be further investigated.
Resumo:
More than 40% of all deaths in Finland are caused by atherosclerosis. The complications of atherosclerosis are due to either detachment of the luminal endothelium (erosion) or rupture of the fibrous cap of an atherosclerotic plaque (rupture). As a result, a thrombus is formed at the site of the intimal lesion. Indeed, erosions cause roughly 40% of sudden atherothrombotic deaths and 25% of all atherothrombotic deaths. Erosions are overrepresented in young subjects, diabetics, smokers and women. This dissertation focuses on endothelial erosion. Endothelial erosions were studied in the context of arterial grafting and vascular inflammation. Special attention was given to the role of intimal mast cells and the methodological viewpoints of reliable identification of endothelial erosions. Mast cells are inflammatory cells mostly known for their ability to cause allergic symptoms. In addition to occurring in skin and mucosal surfaces, mast cells are abundant in arterial intima and adventitia. In this study, mast cells were found to associate with endothelial erosions in non-lesional and atherosclerotic human coronary arteries. Thus, mast cells may participate in atherogenesis at the initial phases of the disease process already. We also showed that the mast cell proteases tryptase, chymase, and cathepsin G are all capable of cleaving molecules essential for endothelial cell-to-cell and cell-to-extracellular matrix interactions, such as VE-cadherin and fibronectin. Symptom-causing carotid plaques were found to contain more inflammatory cells, especially mast cells, than non-symptom-causing plaques. Furthermore, the atherogenic serum lipid profile and the degree of carotid stenosis turned out to correlate with the density of carotid plaque mast cells. Apoptotic and proliferating cells were more abundant in non-symptom causing plaques (active renewal of endothelial cells), but erosions were larger in symptom-causing plaques (capacity of endothelial regeneration exceeded). The process of identifying endothelial erosions with immunostainings has been ambiguous, since both endothelial cells and platelets express largely the same antigens. This may have caused inaccurate interpretations of the presence of endothelial erosion. In the last substudy of this thesis we developed a double immunostaining method for simultaneous identification of endothelial cells and platelets. This method enables more reliable identification of endothelial erosions.
Resumo:
The role of the immune system is to protect an organism against pathogens while maintaining tolerance against self. T cells are an essential component of the immune system and they develop in the thymus. The AIRE (autoimmune regulator) gene product plays an important role in T cell development, as it promotes expression of peripheral tissue antigens in the thymus. Developing T cells, thymocytes, which recognize self-antigens with high affinity are deleted. However, this deletion process is not perfect and not all autoreactive T cells are destroyed. When the distinction between self and non-self fails, tolerance breaks and the immune system attacks the host s own tissues. This results in autoimmunity. Regulatory T cells contribute to the maintenance of self-tolerance. They can actively suppress the function of autoreactive cells. Several populations of cells with regulatory properties have been described, but the best characterized population is the natural regulatory T cells (Treg cells), which develop in the thymus and express the transcription factor FOXP3. The thymic development of Treg cells in humans is the subject of this thesis. Thymocytes at different developmental stages were analyzed using flow cytometry. The CD4-CD8- double-negative (DN) thymocytes are the earliest T cell precursors in the T cell lineage. My results show that the Treg cell marker FOXP3 is up-regulated already in a subset of these DN thymocytes. FOXP3+ cells were also found among the more mature CD4+CD8+ double-positive (DP) cells and among the CD4+ and CD8+ single-positive (SP) thymocytes. The different developmental stages of the FOXP3+ thymocytes were isolated and their gene expression examined by quantitative PCR. T cell receptor (TCR) repertoire analysis was used to compare these different thymocyte populations. My data show that in humans commitment to the Treg cell lineage is an early event and suggest that the development of Treg cells follows a linear developmental pathway, FOXP3+ DN precursors evolving through the DP stage to become mature CD4+ Treg cells. Most T cells have only one kind of TCR on their cell surface, but a small fraction of cells expresses two different TCRs. My results show that the expression of two different TCRs is enriched among Treg cells. Furthermore, both receptors were capable of transmitting signals when bound by a ligand. By extrapolating flow cytometric data, it was estimated that the majority of peripheral blood Treg cells are indeed dual-specific. The high frequency of dual-specific cells among human Treg cells suggests that dual-specificity has a role in directing these cells to the Treg cell lineage. It is known that both genetic predisposition and environmental factors influence the development of autoimmunity. It is also known that the dysfunction or absence of Treg cells leads to the development of autoimmune manifestations. APECED (autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy) is a rare monogenic autoimmune disease, caused by mutations in the AIRE gene. In the absence of AIRE gene product, deletion of self-specific T cells is presumably disturbed and autoreactive T cells escape to the periphery. I examined whether Treg cells are also affected in APECED. I found that the frequency of FOXP3+ Treg cells and the level of FOXP3 expression were significantly lower in APECED patients than in controls. Additionally, when studied in cell cultures, the suppressive capacity of the patients' Treg cells was impaired. Additionally, repertoire analysis showed that the TCR repertoire of Treg cells was altered. These results suggest that AIRE contributes to the development of Treg cells in humans and the selection of Treg cells is impaired in APECED patients. In conclusion, my thesis elucidates the developmental pathway of Treg cells in humans. The differentiation of Tregs begins early during thymic development and both the cells dual-specificity and AIRE probably affect the final commitment of Treg cells.
Resumo:
Paracrine regulation between the components of the tumour microenvironment cancer cells, activated fibroblasts, immune and endothelial cells is under intense investigation. The signals between the different cell types are mediated by soluble factors, such as growth factors, proinflammatory cytokines and proteolytic enzymes. Nemosis is an experimental in vitro model of fibroblast activation, leading to increased production of such mediators. Nemotic activation of fibroblasts occurs as they are forced to cluster thereby forming a multicellular spheroid. The aim of the present studies was to elucidate the mechanisms underlying the nemotic response of cancer-associated fibroblasts (CAF) and the role of nemosis in paracrine regulation between activated fibroblasts and benign and malignant epithelial cells. The results presented in this thesis demonstrate that the nemotic response of CAFs and normal fibroblasts differs, and inter-individual variations exist between fibroblast populations. In co-culture experiments, fibroblasts increased colony formation of squamous cell carcinoma (SCC) cells, and CAFs further augmented this, highlighting the tumour-evolving properties of CAFs. Furthermore, fibroblast monolayers in those co-cultures started to cluster spontaneously. This kind of spontaneous nemosis response might take place also in vivo, although more direct evidence of this still needs to be obtained. The HaCaT skin carcinoma progression model was used to study the effects of benign and malignant keratinocytes on fibroblast nemosis. Benign HaCaT cells inhibited fibroblast nemosis, observed as inhibition of cyclooxygenase 2 (COX-2) induction in nemotic spheroids. In contrast, malignant HaCaTs further augmented the nemotic response by increasing expression of COX-2 and the growth factors hepatocyte growth factor / scatter factor (HGF/SF) and vascular endothelial growth factor (VEGF), as well as causing a myofibroblastic differentiation of nemotic fibroblasts into fibroblasts resembling CAFs. On the other side of this reciprocal signalling, factors secreted into conditioned medium by the nemotic fibroblasts promoted proliferation and motility of the HaCaT cell lines. Notably, the nemotic fibroblast medium increased the expression of p63, a transcription factor linked to carcinogenesis, also in the highly metastatic HaCaT cells. These results emphasize the paracrine role of factors secreted by activated fibroblasts in driving tumour progression. We also investigated the epithelial-mesenchymal transition (EMT) of the HaCaT clones in response to transforming growth factor β (TGF-β), which is a well-characterized inducer of EMT. TGF-β caused growth arrest and loss of epithelial cell junctions in the HaCaT derivatives, but mesenchymal markers were not induced, suggesting a partial, but not complete EMT response. Inflammation induced by COX-2 has been proposed to be a key mechanism in EMT of benign cells. Corroborating this notion, COX-2 was induced only in benign, not in malignant HaCaT derivatives. Furthermore, in cells in which TGF-β caused COX-2 induction, migration was clearly augmented. The concept of treating cancer is changing from targeting solely the cancer cells to targeting the whole microenvironment. The results of this work emphasise the role of activated fibroblasts in cancer progression and that CAFs should also be taken into consideration in the treatment of cancer. The results from these studies suggests that nemosis could be used as a diagnostic tool to distinguish in vitro activated fibroblasts from tumour stroma and also in studying the paracrine signalling that is mediated to other cell types via soluble factors.
Resumo:
Although the treatment of most cancers has improved steadily, only few metastatic solid tumors can be cured. Despite responses, refractory clones often emerge and the disease becomes refractory to available treatment modalities. Furthermore, resistance factors are shared between different treatment regimens and therefore loss of response typically occurs rapidly, and there is a tendency for cross-resistance between agents. Therefore, new agents with novel mechanisms of action and lacking cross-resistance to currently available approaches are needed. Modified oncolytic adenoviruses, featuring cancer-celective cell lysis and spread, constitute an interesting drug platform towards the goals of tumor specificity and the implementation of potent multimodal treatment regimens. In this work, we demonstrate the applicability of capsid-modified, transcriptionally targeted oncolytic adenoviruses in targeting gastric, pancreatic and breast cancer. A variety of capsid modified adenoviruses were tested for transductional specificity first in gastric and pancreatic cancer cells and patient tissues and then in mice. Then, oncolytic viruses featuring the same capsid modifications were tested to confirm that successful transductional targeting translates into enhanced oncolytic potential. Capsid modified oncolytic viruses also prolonged the survival of tumor bearing orthotopic models of gastric and pancreatic cancer. Taken together, oncolytic adenoviral gene therapy could be a potent drug for gastric and pancreatic cancer, and its specificity, potency and safety can be modulated by means of capsid modification. We also characterized a new intraperitoneal virus delivery method in benefit for the persistence of gene delivery to intraperitoneal gastric and pancreatic cancer tumors. With a silica implant a steady and sustained virus release to the vicinity of the tumor improved the survival of the orthotopic tumor bearing mice. Furthermore, silica gel-based virus delivery lowered the toxicity mediating proimflammatory cytokine response and production of total and anti-adenovirus neutralizing antibodies (NAbs). On the other hand, silica shielded the virus against pre-excisting NAbs, resulting in a more favourable biodistribution in the preimmunized mice. The silica implant might therefore be of interest in treating intraperitoneally disseminated disease. Cancer stem cells are thought to be resistant to conventional cancer drugs and might play an important role in cancer relapse and the formation of metastasis. Therefore, we examined if transcriptionally modified oncolytic adenoviruses are able to kill these cells. Complete eradication of CD44+CD24-/low putative breast cancer stem cells was seen in vitro, and significant antitumor activity was detected in CD44+CD24-/low –derived tumor bearing mice. Thus, genetically engineered oncolytic adenoviruses have potential in destroying cancer initiating cells, which may have relevance for the elimination of cancer stem cells in humans.
Resumo:
Heart transplantation is the only therapeutic modality for many end-stage heart diseases but poor long-term survival remains a challenging problem. This is mainly due to the development of cardiac allograft arteriosclerosis (TxCAD) that is an accelerated form of coronary artery disease. Both traditional cardiovascular and transplantation-related risk factors for TxCAD have been identified but options for therapy are limited. TxCAD involves dysfunction of cardiac allograft vascular cells. Activated endothelial cells (EC) regulate allograft inflammation and secrete smooth muscle cell (SMC) growth factors. In turn, SMC and their progenitors invade the intima of the injured vessels and occlude the affected coronary arteries. Different vascular growth factors have to be delicately regulated in normal vascular development. In the present study, experimental heterotopic transplantation models were used to study the role of angiogenic and pro-inflammatory vascular endothelial growth factor (VEGF), EC growth factor angiopoietin (Ang), and SMC mitogen platelet-derived growth factor (PDGF) in the development of TxCAD. Pharmacological and gene transfer approaches were used to target these growth factors and to assess their therapeutic potential. This study shows that alloimmune response in heart transplants upregulates VEGF expression, and induces allograft angiogenesis that involves donor-derived primitive EC. Intracoronary adenoviral VEGF gene transfer increased macrophage infiltration, intimal angiogenesis and TxCAD. VEGF inhibition with PTK787 decreased allograft inflammation and TxCAD, and simultaneous PDGF inhibition with imatinib further decreased TxCAD. Specific inhibition of two VEGF-receptors (VEGFR) decreased allograft inflammation and TxCAD, and VEGFR-2 inhibition normalized the density of primitive and mature capillaries in the allografts. Adenovirus-mediated transient Ang1 expression in the allograft had anti-inflammatory and anti-arteriosclerotic effects. Adeno-associated virus (AAV)-mediated prolonged Ang1 or Ang2 expression had similar anti-inflammatory effects. However, AAV-Ang1 activated allograft SMC whereas AAV-Ang2 had no effects on SMC activation and decreased the development of TxCAD. These studies indicate an interplay of inflammation, angiogenesis and arteriosclerosis in cardiac allografts, and show that vascular growth factors are important regulators in the process. Also, VEGF inhibition, PDGF inhibition and angiopoietin therapy with clinically-relevant pharmacological agents or novel gene therapy approaches may counteract vascular dysfunction in cardiac allografts, and have beneficial effects on the survival of heart transplant patients in the future.