10 resultados para random allocation
em Helda - Digital Repository of University of Helsinki
Resumo:
Planar curves arise naturally as interfaces between two regions of the plane. An important part of statistical physics is the study of lattice models. This thesis is about the interfaces of 2D lattice models. The scaling limit is an infinite system limit which is taken by letting the lattice mesh decrease to zero. At criticality, the scaling limit of an interface is one of the SLE curves (Schramm-Loewner evolution), introduced by Oded Schramm. This family of random curves is parametrized by a real variable, which determines the universality class of the model. The first and the second paper of this thesis study properties of SLEs. They contain two different methods to study the whole SLE curve, which is, in fact, the most interesting object from the statistical physics point of view. These methods are applied to study two symmetries of SLE: reversibility and duality. The first paper uses an algebraic method and a representation of the Virasoro algebra to find common martingales to different processes, and that way, to confirm the symmetries for polynomial expected values of natural SLE data. In the second paper, a recursion is obtained for the same kind of expected values. The recursion is based on stationarity of the law of the whole SLE curve under a SLE induced flow. The third paper deals with one of the most central questions of the field and provides a framework of estimates for describing 2D scaling limits by SLE curves. In particular, it is shown that a weak estimate on the probability of an annulus crossing implies that a random curve arising from a statistical physics model will have scaling limits and those will be well-described by Loewner evolutions with random driving forces.
Resumo:
Social groups are common across animal species. The reasons for grouping are straightforward when all individuals gain directly from cooperating. However, the situation becomes more complex when helping entails costs to the personal reproduction of individuals. Kin selection theory has offered a fruitful framework to explain such cooperation by stating that individuals may spread their genes not only through their own reproduction, but also by helping related individuals reproduce. However, kin selection theory also implicitly predicts conflicts when groups consist of non-clonal individuals, i.e. relatedness is less than one. Then, individual interests are not perfectly aligned, and each individual is predicted to favour the propagation of their own genome over others. Social insects provide a solid study system to study the interplay between cooperation and conflict. Breeding systems in social insects range from solitary breeding to eusocial colonies displaying complete division of reproduction between the fertile queen and the sterile worker caste. Within colonies, additional variation is provided by the presence of several reproductive individuals. In many species, the queen mates multiply, which causes the colony to consist of half-sib instead of full-sib offspring. Furthermore, in many species colonies contain multiple breeding queens, which further dilutes relatedness between colony members. Evolutionary biology is thus faced with the challenge to answer why such variation in social structure exists, and what the consequences are on the individual and population level. The main part of this thesis takes on this challenge by investing the dynamics of socially polymorphic ant colonies. The first four chapters investigate the causes and consequences of different social structures, using a combination of field studies, genetic analyses and laboratory experiments. The thesis ends with a theoretical chapter focusing on different social interactions (altruism and spite), and the evolution of harming traits. The main results of the thesis show that social polymorphism has the potential to affect the behaviour and traits of both individuals and colonies. For example, we found that genetic polymorphism may increase the phenotypic variation between individuals in colonies, and that socially polymorphic colonies may show different life history patterns. We also show that colony cohesion may be enhanced even in multiple-queen colonies through patterns of unequal reproduction between queens. However, the thesis also demonstrates that spatial and temporal variation between both populations and environments may affect individual and colony traits, to the degree that results obtained in one place or at one time may not be applicable in other situations. This opens up potential further areas of research to explain these differences.
Resumo:
Time-dependent backgrounds in string theory provide a natural testing ground for physics concerning dynamical phenomena which cannot be reliably addressed in usual quantum field theories and cosmology. A good, tractable example to study is the rolling tachyon background, which describes the decay of an unstable brane in bosonic and supersymmetric Type II string theories. In this thesis I use boundary conformal field theory along with random matrix theory and Coulomb gas thermodynamics techniques to study open and closed string scattering amplitudes off the decaying brane. The calculation of the simplest example, the tree-level amplitude of n open strings, would give us the emission rate of the open strings. However, even this has been unknown. I will organize the open string scattering computations in a more coherent manner and will argue how to make further progress.
Resumo:
In this thesis we deal with the concept of risk. The objective is to bring together and conclude on some normative information regarding quantitative portfolio management and risk assessment. The first essay concentrates on return dependency. We propose an algorithm for classifying markets into rising and falling. Given the algorithm, we derive a statistic: the Trend Switch Probability, for detection of long-term return dependency in the first moment. The empirical results suggest that the Trend Switch Probability is robust over various volatility specifications. The serial dependency in bear and bull markets behaves however differently. It is strongly positive in rising market whereas in bear markets it is closer to a random walk. Realized volatility, a technique for estimating volatility from high frequency data, is investigated in essays two and three. In the second essay we find, when measuring realized variance on a set of German stocks, that the second moment dependency structure is highly unstable and changes randomly. Results also suggest that volatility is non-stationary from time to time. In the third essay we examine the impact from market microstructure on the error between estimated realized volatility and the volatility of the underlying process. With simulation-based techniques we show that autocorrelation in returns leads to biased variance estimates and that lower sampling frequency and non-constant volatility increases the error variation between the estimated variance and the variance of the underlying process. From these essays we can conclude that volatility is not easily estimated, even from high frequency data. It is neither very well behaved in terms of stability nor dependency over time. Based on these observations, we would recommend the use of simple, transparent methods that are likely to be more robust over differing volatility regimes than models with a complex parameter universe. In analyzing long-term return dependency in the first moment we find that the Trend Switch Probability is a robust estimator. This is an interesting area for further research, with important implications for active asset allocation.
Resumo:
Markov random fields (MRF) are popular in image processing applications to describe spatial dependencies between image units. Here, we take a look at the theory and the models of MRFs with an application to improve forest inventory estimates. Typically, autocorrelation between study units is a nuisance in statistical inference, but we take an advantage of the dependencies to smooth noisy measurements by borrowing information from the neighbouring units. We build a stochastic spatial model, which we estimate with a Markov chain Monte Carlo simulation method. The smooth values are validated against another data set increasing our confidence that the estimates are more accurate than the originals.
Resumo:
Light scattering, or scattering and absorption of electromagnetic waves, is an important tool in all remote-sensing observations. In astronomy, the light scattered or absorbed by a distant object can be the only source of information. In Solar-system studies, the light-scattering methods are employed when interpreting observations of atmosphereless bodies such as asteroids, atmospheres of planets, and cometary or interplanetary dust. Our Earth is constantly monitored from artificial satellites at different wavelengths. With remote sensing of Earth the light-scattering methods are not the only source of information: there is always the possibility to make in situ measurements. The satellite-based remote sensing is, however, superior in the sense of speed and coverage if only the scattered signal can be reliably interpreted. The optical properties of many industrial products play a key role in their quality. Especially for products such as paint and paper, the ability to obscure the background and to reflect light is of utmost importance. High-grade papers are evaluated based on their brightness, opacity, color, and gloss. In product development, there is a need for computer-based simulation methods that could predict the optical properties and, therefore, could be used in optimizing the quality while reducing the material costs. With paper, for instance, pilot experiments with an actual paper machine can be very time- and resource-consuming. The light-scattering methods presented in this thesis solve rigorously the interaction of light and material with wavelength-scale structures. These methods are computationally demanding, thus the speed and accuracy of the methods play a key role. Different implementations of the discrete-dipole approximation are compared in the thesis and the results provide practical guidelines in choosing a suitable code. In addition, a novel method is presented for the numerical computations of orientation-averaged light-scattering properties of a particle, and the method is compared against existing techniques. Simulation of light scattering for various targets and the possible problems arising from the finite size of the model target are discussed in the thesis. Scattering by single particles and small clusters is considered, as well as scattering in particulate media, and scattering in continuous media with porosity or surface roughness. Various techniques for modeling the scattering media are presented and the results are applied to optimizing the structure of paper. However, the same methods can be applied in light-scattering studies of Solar-system regoliths or cometary dust, or in any remote-sensing problem involving light scattering in random media with wavelength-scale structures.