13 resultados para non-covalent interactions
em Helda - Digital Repository of University of Helsinki
Resumo:
Increasing attention has been focused on methods that deliver pharmacologically active compounds (e.g. drugs, peptides and proteins) in a controlled fashion, so that constant, sustained, site-specific or pulsatile action can be attained. Ion-exchange resins have been widely studied in medical and pharmaceutical applications, including controlled drug delivery, leading to commercialisation of some resin based formulations. Ion-exchangers provide an efficient means to adjust and control drug delivery, as the electrostatic interactions enable precise control of the ion-exchange process and, thus, a more uniform and accurate control of drug release compared to systems that are based only on physical interactions. Unlike the resins, only few studies have been reported on ion-exchange fibers in drug delivery. However, the ion-exchange fibers have many advantageous properties compared to the conventional ion-exchange resins, such as more efficient compound loading into and release from the ion-exchanger, easier incorporation of drug-sized compounds, enhanced control of the ion-exchange process, better mechanical, chemical and thermal stability, and good formulation properties, which make the fibers attractive materials for controlled drug delivery systems. In this study, the factors affecting the nature and strength of the binding/loading of drug-sized model compounds into the ion-exchange fibers was evaluated comprehensively and, moreover, the controllability of subsequent drug release/delivery from the fibers was assessed by modifying the conditions of external solutions. Also the feasibility of ion-exchange fibers for simultaneous delivery of two drugs in combination was studied by dual loading. Donnan theory and theoretical modelling were applied to gain mechanistic understanding on these factors. The experimental results imply that incorporation of model compounds into the ion-exchange fibers was attained mainly as a result of ionic bonding, with additional contribution of non-specific interactions. Increasing the ion-exchange capacity of the fiber or decreasing the valence of loaded compounds increased the molar loading, while more efficient release of the compounds was observed consistently at conditions where the valence or concentration of the extracting counter-ion was increased. Donnan theory was capable of fully interpreting the ion-exchange equilibria and the theoretical modelling supported precisely the experimental observations. The physico-chemical characteristics (lipophilicity, hydrogen bonding ability) of the model compounds and the framework of the fibrous ion-exchanger influenced the affinity of the drugs towards the fibers and may, thus, affect both drug loading and release. It was concluded that precisely controlled drug delivery may be tailored for each compound, in particularly, by choosing a suitable ion-exchange fiber and optimizing the delivery system to take into account the external conditions, also when delivering two drugs simultaneously.
Resumo:
The magnetically induced currents in organic monoring and multiring molecules, in Möbius shaped molecules and in inorganic all-metal molecules have been investigated by means of the Gauge-including magnetically induced currents (GIMIC) method. With the GIMIC method, the ring-current strengths and the ring-current density distributions can be calculated. For open-shell molecules, also the spin current can be obtained. The ring-current pathways and ring-current strengths can be used to understand the magnetic resonance properties of the molecules, to indirectly identify the effect of non-bonded interactions on NMR chemical shifts, to design new molecules with tailored properties and to discuss molecular aromaticity. In the thesis, the magnetic criterion for aromaticity has been adopted. According to this, a molecule which has a net diatropic ring current might be aromatic. Similarly, a molecule which has a net paratropic current might be antiaromatic. If the net current is zero, the molecule is nonaromatic. The electronic structure of the investigated molecules has been resolved by quantum chemical methods. The magnetically induced currents have been calculated with the GIMIC method at the density-functional theory (DFT) level, as well as at the self-consistent field Hartree-Fock (SCF-HF), at the Møller-Plesset perturbation theory of the second order (MP2) and at the coupled-cluster singles and doubles (CCSD) levels of theory. For closed-shell molecules, accurate ring-current strengths can be obtained with a reasonable computational cost at the DFT level and with rather small basis sets. For open-shell molecules, it is shown that correlated methods such as MP2 and CCSD might be needed to obtain reliable charge and spin currents. The basis set convergence has to be checked for open-shell molecules by performing calculations with large enough basis sets. The results discussed in the thesis have been published in eight papers. In addition, some previously unpublished results on the ring currents in the endohedral fullerene Sc3C2@C80 and in coronene are presented. It is shown that dynamical effects should be taken into account when modelling magnetic resonance parameters of endohedral metallofullerenes such as Sc3C2@C80. The ring-current strengths in a series of nano-sized hydrocarbon rings are related to static polarizabilities and to H-1 nuclear magnetic resonance (NMR) shieldings. In a case study on the possible aromaticity of a Möbius-shaped [16]annulene we found that, according to the magnetic criterion, the molecule is nonaromatic. The applicability of the GIMIC method to assign the aromatic character of molecules was confirmed in a study on the ring currents in simple monocylic aromatic, homoaromatic, antiaromatic, and nonaromatic hydrocarbons. Case studies on nanorings, hexaphyrins and [n]cycloparaphenylenes show that explicit calculations are needed to unravel the ring-current delocalization pathways in complex multiring molecules. The open-shell implementation of GIMIC was applied in studies on the charge currents and the spin currents in single-ring and bi-ring molecules with open shells. The aromaticity predictions that are made based on the GIMIC results are compared to other aromaticity criteria such as H-1 NMR shieldings and shifts, electric polarizabilities, bond-length alternation, as well as to predictions provided by the traditional Hückel (4n+2) rule and its more recent extensions that account for Möbius twisted molecules and for molecules with open shells.
Resumo:
Determination of testosterone and related compounds in body fluids is of utmost importance in doping control and the diagnosis of many diseases. Capillary electromigration techniques are a relatively new approach for steroid research. Owing to their electrical neutrality, however, separation of steroids by capillary electromigration techniques requires the use of charged electrolyte additives that interact with the steroids either specifically or non-specifically. The analysis of testosterone and related steroids by non-specific micellar electrokinetic chromatography (MEKC) was investigated in this study. The partial filling (PF) technique was employed, being suitable for detection by both ultraviolet spectrophotometry (UV) and electrospray ionization mass spectrometry (ESI-MS). Efficient, quantitative PF-MEKC UV methods for steroid standards were developed through the use of optimized pseudostationary phases comprising surfactants and cyclodextrins. PF-MEKC UV proved to be a more sensitive, efficient and repeatable method for the steroids than PF-MEKC ESI-MS. It was discovered that in PF-MEKC analyses of electrically neutral steroids, ESI-MS interfacing sets significant limitations not only on the chemistry affecting the ionization and detection processes, but also on the separation. The new PF-MEKC UV method was successfully employed in the determination of testosterone in male urine samples after microscale immunoaffinity solid-phase extraction (IA-SPE). The IA-SPE method, relying on specific interactions between testosterone and a recombinant anti-testosterone Fab fragment, is the first such method described for testosterone. Finally, new data for interactions between steroids and human and bovine serum albumins were obtained through the use of affinity capillary electrophoresis. A new algorithm for the calculation of association constants between proteins and neutral ligands is introduced.
Resumo:
The androgen receptor (AR) mediates the effects of the male sex-steroid hormones (androgens), testosterone and 5?-dihydrotestosterone. Androgens are critical in the development and maintenance of male sexual characteristics. AR is a member of the steroid receptor ligand-inducible transcription factor family. The steroid receptor family is a subgroup of the nuclear receptor superfamily that also includes receptors for the active forms of vitamin A, vitamin D3, and thyroid hormones. Like all nuclear receptors, AR has a conserved modular structure consisting of a non-conserved amino-terminal domain (NTD), containing the intrinsic activation function 1, a highly conserved DNA-binding domain, and a conserved ligand-binding domain (LBD) that harbors the activation function 2. Each of these domains plays an important role in receptor function and signaling, either via intra- and inter-receptor interactions, interactions with specific DNA sequences, termed hormone response elements, or via functional interactions with domain-specific proteins, termed coregulators (coactivators and corepressors). Upon binding androgens, AR acquires a new conformational state, translocates to the nucleus, binds to androgen response elements, homodimerizes and recruits sequence-specific coregulatory factors and the basal transcription machinery. This set of events is required to activate gene transcription (expression). Gene transcription is a strictly modulated process that governs cell growth, cell homeostasis, cell function and cell death. Disruptions of AR transcriptional activity caused by receptor mutations and/or altered coregulator interactions are linked to a wide spectrum of androgen insensitivity syndromes, and to the pathogenesis of prostate cancer (CaP). The treatment of CaP usually involves androgen depletion therapy (ADT). ADT achieves significant clinical responses during the early stages of the disease. However, under the selective pressure of androgen withdrawal, androgen-dependent CaP can progress to an androgen-independent CaP. Androgen-independent CaP is invariably a more aggressive and untreatable form of the disease. Advancing our understanding of the molecular mechanisms behind the switch in androgen-dependency would improve our success of treating CaP and other AR related illnesses. This study evaluates how clinically identified AR mutations affect the receptor s transcriptional activity. We reveal that a potential molecular abnormality in androgen insensitivity syndrome and CaP patients is caused by disruptions of the important intra-receptor NTD/LBD interaction. We demonstrate that the same AR LBD mutations can also disrupt the recruitment of the p160 coactivator protein GRIP1. Our investigations reveal that 30% of patients with advanced, untreated local CaP have somatic mutations that may lead to increases in AR activity. We report that somatic mutations that activate AR may lead to early relapse in ADT. Our results demonstrate that the types of ADT a CaP patient receives may cause a clustering of mutations to a particular region of the receptor. Furthermore, the mutations that arise before and during ADT do not always result in a receptor that is more active, indicating that coregulator interactions play a pivotal role in the progression of androgen-independent CaP. To improve CaP therapy, it is necessary to identify critical coregulators of AR. We screened a HeLa cell cDNA library and identified small carboxyl-terminal domain phosphatase 2 (SCP2). SCP2 is a protein phosphatase that directly interacts with the AR NTD and represses AR activity. We demonstrated that reducing the endogenous cellular levels of SCP2 causes more AR to load on to the prostate specific antigen (PSA) gene promoter and enhancer regions. Additionally, under the same conditions, more RNA polymerase II was recruited to the PSA promoter region and overall there was an increase in androgen-dependent transcription of the PSA gene, revealing that SCP2 could play a role in the pathogenesis of CaP.
Resumo:
The development of biotechnology techniques in plant breeding and the new commercial applications have raised public and scientific concerns about the safety of genetically modified (GM) crops and trees. To find out the feasibility of these new technologies in the breeding of commercially important Finnish hardwood species and to estimate the ecological risks of the produced transgenic plants, the experiments of this study have been conducted as a part of a larger project focusing on the risk assessment of GM-trees. Transgenic Betula pendula and Populus trees were produced via Agrobacterium mediated transformation. Stilbene synthase (STS) gene from pine (Pinus sylvestris) and chitinase gene from sugar beet (Beta vulgaris) were transferred to (hybrid) aspen and birch, respectively, to improve disease resistance against fungal pathogens. To modify lignin biosynthesis, a 4-coumarate:coenzyme A ligase (4CL) gene fragment in antisense orientation was introduced into two birch clones. In in vitro test, one transgenic aspen line expressing pine STS gene showed increased resistance to decay fungus Phellinus tremulae. In the field, chitinase transgenic birch lines were more susceptible to leaf spot (Pyrenopeziza betulicola) than the non-transgenic control clone while the resistance against birch rust (Melampsoridium betulinum) was improved. No changes in the content or composition of lignin were detected in the 4CL antisense birch lines. In order to evaluate the ecological effects of the produced GM trees on non-target organisms, an in vitro mycorrhiza experiment with Paxillus involutus and a decomposition experiment in the field were performed. The expression of a transgenic chitinase did not disturb the establishment of mycorrhizal symbiosis between birch and P. involutus in vitro. 4CL antisense transformed birch lines showed retarded root growth but were able to form normal ectomycorrhizal associations with the mycorrhizal fungus in vitro. 4CL lines also showed normal litter decomposition. Unexpected growth reductions resulting from the gene transformation were observed in chitinase transgenic and 4CL antisense birch lines. These results indicate that genetic engineering can provide a tool in increasing disease resistance in Finnish tree species. More extensive data with several ectomycorrhizal species is needed to evaluate the consequences of transgene expression on beneficial plant-fungus symbioses. The potential pleiotropic effects of the transgene should also be taken into account when considering the safety of transgenic trees.
Resumo:
Photosynthesis is a chemical process in which the energy of the light quanta is transformed into chemical energy. Chlorophyll (Chl) molecules play a key role in photosynthesis; they function in the antennae systems and in the photosynthetic reaction center where the primary charge separation (CS) takes place. Bio-inspired mimicry of the CS is an essential unit in dye-sensitized solar cells. Aim of this study was to design and develop electron donor-acceptor (EDA) pairs from Chls and fullerenes (C60) or carbon nanotubes (CNT). The supramolecular approach was chosen, as long synthetic sequences required by the covalent approach lead to long reaction schemes and low yields. Here, a π-interaction between soluble CNTs and Chl was used in EDA construction. Also, a beta-face selective two-point bound Chl-C60 EDA was introduced. In addition, the photophysical properties of the supramolecular EDA dyads were analyzed. In organic chemistry, nuclear magnetic resonance (NMR) spectroscopy is the most vital analytical technique in use. Multi-dimensional NMR experiments have enabled a structural analysis of complex natural products and proteins. However, in mixture analysis NMR is still facing difficulties. In many cases overlapping signals can t be resolved even with the help of multi-dimensional experiments. In this work, an NMR tool based on simple host-guest chemistry between analytes and macromolecules was developed. Diffusion ordered NMR spectroscopy (DOSY) measures the mobilities of compounds in an NMR sample. In a liquid state NMR sample, each of the analytes has a characteristic diffusion coefficient, which is proportional to the size of the analyte. With normal DOSY experiment, provided that the diffusion coefficients of the analytes differ enough, individual spectra of analytes can be extracted. When similar sized analytes differ chemically, an additive can be introduced into the sample. Since macromolecules in a liquid state NMR sample can be considered practically stationary, even faint supramolecular interaction can change the diffusion coefficient of the analyte sufficiently for a successful resolution in DOSY. In this thesis, polyvinylpyrrolidone and polyethyleneglycol enhanced DOSY NMR techniques, which enable mixture analysis of similar in size but chemically differing natural products, are introduced.
Resumo:
The purpose of this study is to describe the development of application of mass spectrometry for the structural analyses of non-coding ribonucleic acids during past decade. Mass spectrometric methods are compared of traditional gel electrophoretic methods, the characteristics of performance of mass spectrometric, analyses are studied and the future trends of mass spectrometry of ribonucleic acids are discussed. Non-coding ribonucleic acids are short polymeric biomolecules which are not translated to proteins, but which may affect the gene expression in all organisms. Regulatory ribonucleic acids act through transient interactions with key molecules in signal transduction pathways. Interactions are mediated through specific secondary and tertiary structures. Posttranscriptional modifications in the structures of molecules may introduce new properties to the organism, such as adaptation to environmental changes or development of resistance to antibiotics. In the scope of this study, the structural studies include i) determination of the sequence of nucleobases in the polymer chain, ii) characterisation and localisation of posttranscriptional modifications in nucleobases and in the backbone structure, iii) identification of ribonucleic acid-binding molecules and iv) probing of higher order structures in the ribonucleic acid molecule. Bacteria, archaea, viruses and HeLa cancer cells have been used as target organisms. Synthesised ribonucleic acids consisting of structural regions of interest have been frequently used. Electrospray ionisation (ESI) and matrix-assisted laser desorption ionisation (MALDI) have been used for ionisation of ribonucleic analytes. Ammonium acetate and 2-propanol are common solvents for ESI. Trihydroxyacetophenone is the optimal MALDI matrix for ionisation of ribonucleic acids and peptides. Ammonium salts are used in ESI buffers and MALDI matrices as additives to remove cation adducts. Reverse phase high performance liquid chromatography has been used for desalting and fractionation of analytes either off-line of on-line, coupled with ESI source. Triethylamine and triethylammonium bicarbonate are used as ion pair reagents almost exclusively. Fourier transform ion cyclotron resonance analyser using ESI coupled with liquid chromatography is the platform of choice for all forms of structural analyses. Time-of-flight (TOF) analyser using MALDI may offer sensitive, easy-to-use and economical solution for simple sequencing of longer oligonucleotides and analyses of analyte mixtures without prior fractionation. Special analysis software is used for computer-aided interpretation of mass spectra. With mass spectrometry, sequences of 20-30 nucleotides of length may be determined unambiguously. Sequencing may be applied to quality control of short synthetic oligomers for analytical purposes. Sequencing in conjunction with other structural studies enables accurate localisation and characterisation of posttranscriptional modifications and identification of nucleobases and amino acids at the sites of interaction. High throughput screening methods for RNA-binding ligands have been developed. Probing of the higher order structures has provided supportive data for computer-generated three dimensional models of viral pseudoknots. In conclusion. mass spectrometric methods are well suited for structural analyses of small species of ribonucleic acids, such as short non-coding ribonucleic acids in the molecular size region of 20-30 nucleotides. Structural information not attainable with other methods of analyses, such as nuclear magnetic resonance and X-ray crystallography, may be obtained with the use of mass spectrometry. Sequencing may be applied to quality control of short synthetic oligomers for analytical purposes. Ligand screening may be used in the search of possible new therapeutic agents. Demanding assay design and challenging interpretation of data requires multidisclipinary knowledge. The implement of mass spectrometry to structural studies of ribonucleic acids is probably most efficiently conducted in specialist groups consisting of researchers from various fields of science.
Resumo:
The aim of the studies reported in this thesis was to examine the feeding interactions between calanoid copepods and toxic algae in the Baltic Sea. The central questions in this research concerned the feeding, survival and egg production of copepods exposed to toxic algae. Furthermore, the importance of copepods as vectors in toxin transfer was examined. The haptophyte Prymnesium parvum, which produces extracellular toxins, was the only studied species that directly harmed copepods. Beside this, it had allelopathic effects (cell lysis) on non-toxic Rhodomonas salina. Copepods that were exposed to P. parvum filtrates died or became severely impaired, although filtrates were not haemolytic (indicative of toxicity in this study). Monospecific Prymnesium cell suspensions, in turn, were haemolytic and copepods in these treatments became inactive, although no clear effect on mortality was detected. These results suggest that haemolytic activity may not be a good proxy of the harmful effects of P. parvum. In addition, P. parvum deterred feeding, and low egestion and suppressed egg production were consequently observed in monospecific suspensions of Prymnesium. Similarly, ingestion and faecal pellet production rates were suppressed in high concentration P. parvum filtrates and in mixtures of P. parvum and R. salina. These results indicate that the allelopathic effects of P. parvum on other algal species together with lowered viability as well as suppressed production of copepods may contribute to bloom formation and persistence. Furthermore, the availability of food for planktivorous animals may be affected due to reduced copepod productivity. Nodularin produced by Nodularia spumigena was transferred to Eurytemora affinis via grazing on filaments of small N. spumigena and by direct uptake from the dissolved pool. Copepods also acquired nodularin in fractions where N. spumigena filaments were absent. Thus, the importance of microbial food webs in nodularin transfer should be considered. Copepods were able to remove particulate nodularin from the system, but at the same time a large proportion of the nodularin disappeared. This indicates that copepods may possess effective mechanisms to remove toxins from their tissues. The importance of microorganisms, such as bacteria, in the degradation of cyanobacterial toxins could also be substantial. Our results were the first reports of the accumulation of diarrhetic shellfish toxins (DSTs) produced by Dinophysis spp. in copepods. The PTX2 content in copepods after feeding experiments corresponded to the ingestion of <100 Dinophysis spp. cells. However, no DSTs were recorded from field-collected copepods. Dinophysis spp. was not selected by the copepods and consumption remained low. It seems thus likely that copepods are an unimportant link in the transfer of DSTs in the northern Baltic Sea.
Resumo:
The striated muscle sarcomere is a force generating and transducing unit as well as an important sensor of extracellular cues and a coordinator of cellular signals. The borders of individual sarcomeres are formed by the Z-disks. The Z-disk component myotilin interacts with Z-disk core structural proteins and with regulators of signaling cascades. Missense mutations in the gene encoding myotilin cause dominantly inherited muscle disorders, myotilinopathies, by an unknown mechanism. In this thesis the functions of myotilin were further characterized to clarify the molecular biological basis and the pathogenetic mechanisms of inherited muscle disorders, mainly caused by mutated myotilin. Myotilin has an important function in the assembly and maintenance of the Z-disks probably through its actin-organizing properties. Our results show that the Ig-domains of myotilin are needed for both binding and bundling actin and define the Ig domains as actin-binding modules. The disease-causing mutations appear not to change the interplay between actin and myotilin. Interactions between Z-disk proteins regulate muscle functions and disruption of these interactions results in muscle disorders. Mutations in Z-disk components myotilin, ZASP/Cypher and FATZ-2 (calsarcin-1/myozenin-2) are associated with myopathies. We showed that proteins from the myotilin and FATZ families interact via a novel and unique type of class III PDZ binding motif with the PDZ domains of ZASP and other Enigma family members and that the interactions can be modulated by phosphorylation. The morphological findings typical of myotilinopathies include Z-disk alterations and aggregation of dense filamentous material. The causes and mechanisms of protein aggregation in myotilinopathy patients are unknown, but impaired degradation might explain in part the abnormal protein accumulation. We showed that myotilin is degraded by the calcium-dependent, non-lysosomal cysteine protease calpain and by the proteasome pathway, and that wild type and mutant myotilin differ in their sensitivity to degradation. These studies identify the first functional difference between mutated and wild type myotilin. Furthermore, if degradation of myotilin is disturbed, it accumulates in cells in a manner resembling that seen in myotilinopathy patients. Based on the results, we propose a model where mutant myotilin escapes proteolytic breakdown and forms protein aggregates, leading to disruption of myofibrils and muscular dystrophy. In conclusion, the main results of this study demonstrate that myotilin is a Z-disk structural protein interacting with several Z-disk components. The turnover of myotilin is regulated by calpain and the ubiquitin proteasome system and mutations in myotilin seem to affect the degradation of myotilin, leading to protein accumulations in cells. These findings are important for understanding myotilin-linked muscle diseases and designing treatments for these disorders.
Resumo:
Close to one half of the LHC events are expected to be due to elastic or inelastic diffractive scattering. Still, predictions based on extrapolations of experimental data at lower energies differ by large factors in estimating the relative rate of diffractive event categories at the LHC energies. By identifying diffractive events, detailed studies on proton structure can be carried out. The combined forward physics objects: rapidity gaps, forward multiplicity and transverse energy flows can be used to efficiently classify proton-proton collisions. Data samples recorded by the forward detectors, with a simple extension, will allow first estimates of the single diffractive (SD), double diffractive (DD), central diffractive (CD), and non-diffractive (ND) cross sections. The approach, which uses the measurement of inelastic activity in forward and central detector systems, is complementary to the detection and measurement of leading beam-like protons. In this investigation, three different multivariate analysis approaches are assessed in classifying forward physics processes at the LHC. It is shown that with gene expression programming, neural networks and support vector machines, diffraction can be efficiently identified within a large sample of simulated proton-proton scattering events. The event characteristics are visualized by using the self-organizing map algorithm.
Resumo:
Non-timber forest products (NTFPs) are one of the major income sources for the rural population of Laos. An exploratory study was conducted to determine the role of non-timber forest products for rural communities of the study area. The study was carried out in two villages viz. Ban Napo and Ban Kouay of Sangthong district between January and March 2010. A semi-structured questionnaire was used to gather data from the respondents. Twenty-five respondents from each village were chosen based on their involvement in NTFPs collection and marketing activities. Statistically significant NTFPs income differences were not found between the villages and age groups of the respondents, however, significant differences were found in the annual incomes between farms size of the respondents. This study also analyzed the value chain structure of the three (See khai’ ton, Bamboo mats and Incense sticks) important non-timber forest products and the interactions between the actors in the case study areas. Barriers to entry the market, governance and upgrading possibilities have been discussed for each of the value chains. Comparison of unit prices at different levels of the value chains indicated uneven income distribution in favour of the intermediaries, factories and foreign buyers. The lack of capital, marketing information and negotiation skills restricted the villagers to increase their income. However, all the respondents have shown their satisfaction with their income from NTFPs.
Resumo:
Use of adverse drug combinations, abuse of medicinal drugs and substance abuse are considerable social problems that are difficult to study. Prescription database studies might fail to incorporate factors like use of over-the-counter drugs and patient compliance, and spontaneous reporting databases suffer from underreporting. Substance abuse and smoking studies might be impeded by poor participation activity and reliability. The Forensic Toxicology Unit at the University of Helsinki is the only laboratory in Finland that performs forensic toxicology related to cause-of-death investigations comprising the analysis of over 6000 medico-legal cases yearly. The analysis repertoire covers most commonly used drugs and drugs of abuse, and the ensuing database contains also background information and information extracted from the final death certificate. In this thesis, the data stored in this comprehensive post-mortem toxicology database was combined with additional metabolite and genotype analyses that were performed to complete the profile of selected cases. The incidence of drug combinations possessing serious adverse drug interactions was generally low (0.71%), but it was notable for the two individually studied drugs, a common anticoagulant warfarin (33%) and a new generation antidepressant venlafaxine (46%). Serotonin toxicity and adverse cardiovascular effects were the most prominent possible adverse outcomes. However, the specific role of the suspected adverse drug combinations was rarely recognized in the death certificates. The frequency of bleeds was observed to be elevated when paracetamol and warfarin were used concomitantly. Pharmacogenetic factors did not play a major role in fatalities related to venlafaxine, but the presence of interacting drugs was more common in cases showing high venlafaxine concentrations. Nicotine findings in deceased young adults were roughly three times more prevalent than the smoking frequency estimation of living population. Contrary to previous studies, no difference in the proportion of suicides was observed between nicotine users and non-nicotine users. However, findings of abused substances, including abused prescription drugs, were more common in the nicotine users group than in the non-nicotine users group. The results of the thesis are important for forensic and clinical medicine, as well as for public health. The possibility of drug interactions and pharmacogenetic issues should be taken into account in cause-of-death investigations, especially in unclear cases, medical malpractice suspicions and cases where toxicological findings are scarce. Post-mortem toxicological epidemiology is a new field of research that can help to reveal problems in drug use and prescription practises.
Resumo:
A better understanding of vacuum arcs is desirable in many of today's 'big science' projects including linear colliders, fusion devices, and satellite systems. For the Compact Linear Collider (CLIC) design, radio-frequency (RF) breakdowns occurring in accelerating cavities influence efficiency optimisation and cost reduction issues. Studying vacuum arcs both theoretically as well as experimentally under well-defined and reproducible direct-current (DC) conditions is the first step towards exploring RF breakdowns. In this thesis, we have studied Cu DC vacuum arcs with a combination of experiments, a particle-in-cell (PIC) model of the arc plasma, and molecular dynamics (MD) simulations of the subsequent surface damaging mechanism. We have also developed the 2D Arc-PIC code and the physics model incorporated in it, especially for the purpose of modelling the plasma initiation in vacuum arcs. Assuming the presence of a field emitter at the cathode initially, we have identified the conditions for plasma formation and have studied the transitions from field emission stage to a fully developed arc. The 'footing' of the plasma is the cathode spot that supplies the arc continuously with particles; the high-density core of the plasma is located above this cathode spot. Our results have shown that once an arc plasma is initiated, and as long as energy is available, the arc is self-maintaining due to the plasma sheath that ensures enhanced field emission and sputtering. The plasma model can already give an estimate on how the time-to-breakdown changes with the neutral evaporation rate, which is yet to be determined by atomistic simulations. Due to the non-linearity of the problem, we have also performed a code-to-code comparison. The reproducibility of plasma behaviour and time-to-breakdown with independent codes increased confidence in the results presented here. Our MD simulations identified high-flux, high-energy ion bombardment as a possible mechanism forming the early-stage surface damage in vacuum arcs. In this mechanism, sputtering occurs mostly in clusters, as a consequence of overlapping heat spikes. Different-sized experimental and simulated craters were found to be self-similar with a crater depth-to-width ratio of about 0.23 (sim) - 0.26 (exp). Experiments, which we carried out to investigate the energy dependence of DC breakdown properties, point at an intrinsic connection between DC and RF scaling laws and suggest the possibility of accumulative effects influencing the field enhancement factor.