7 resultados para mathematical

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In cardiac myocytes (heart muscle cells), coupling of electric signal known as the action potential to contraction of the heart depends crucially on calcium-induced calcium release (CICR) in a microdomain known as the dyad. During CICR, the peak number of free calcium ions (Ca) present in the dyad is small, typically estimated to be within range 1-100. Since the free Ca ions mediate CICR, noise in Ca signaling due to the small number of free calcium ions influences Excitation-Contraction (EC) coupling gain. Noise in Ca signaling is only one noise type influencing cardiac myocytes, e.g., ion channels playing a central role in action potential propagation are stochastic machines, each of which gates more or less randomly, which produces gating noise present in membrane currents. How various noise sources influence macroscopic properties of a myocyte, how noise is attenuated and taken advantage of are largely open questions. In this thesis, the impact of noise on CICR, EC coupling and, more generally, macroscopic properties of a cardiac myocyte is investigated at multiple levels of detail using mathematical models. Complementarily to the investigation of the impact of noise on CICR, computationally-efficient yet spatially-detailed models of CICR are developed. The results of this thesis show that (1) gating noise due to the high-activity mode of L-type calcium channels playing a major role in CICR may induce early after-depolarizations associated with polymorphic tachycardia, which is a frequent precursor to sudden cardiac death in heart failure patients; (2) an increased level of voltage noise typically increases action potential duration and it skews distribution of action potential durations toward long durations in cardiac myocytes; and that (3) while a small number of Ca ions mediate CICR, Excitation-Contraction coupling is robust against this noise source, partly due to the shape of ryanodine receptor protein structures present in the cardiac dyad.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Frictions are factors that hinder trading of securities in financial markets. Typical frictions include limited market depth, transaction costs, lack of infinite divisibility of securities, and taxes. Conventional models used in mathematical finance often gloss over these issues, which affect almost all financial markets, by arguing that the impact of frictions is negligible and, consequently, the frictionless models are valid approximations. This dissertation consists of three research papers, which are related to the study of the validity of such approximations in two distinct modeling problems. Models of price dynamics that are based on diffusion processes, i.e., continuous strong Markov processes, are widely used in the frictionless scenario. The first paper establishes that diffusion models can indeed be understood as approximations of price dynamics in markets with frictions. This is achieved by introducing an agent-based model of a financial market where finitely many agents trade a financial security, the price of which evolves according to price impacts generated by trades. It is shown that, if the number of agents is large, then under certain assumptions the price process of security, which is a pure-jump process, can be approximated by a one-dimensional diffusion process. In a slightly extended model, in which agents may exhibit herd behavior, the approximating diffusion model turns out to be a stochastic volatility model. Finally, it is shown that when agents' tendency to herd is strong, logarithmic returns in the approximating stochastic volatility model are heavy-tailed. The remaining papers are related to no-arbitrage criteria and superhedging in continuous-time option pricing models under small-transaction-cost asymptotics. Guasoni, Rásonyi, and Schachermayer have recently shown that, in such a setting, any financial security admits no arbitrage opportunities and there exist no feasible superhedging strategies for European call and put options written on it, as long as its price process is continuous and has the so-called conditional full support (CFS) property. Motivated by this result, CFS is established for certain stochastic integrals and a subclass of Brownian semistationary processes in the two papers. As a consequence, a wide range of possibly non-Markovian local and stochastic volatility models have the CFS property.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The usual task in music information retrieval (MIR) is to find occurrences of a monophonic query pattern within a music database, which can contain both monophonic and polyphonic content. The so-called query-by-humming systems are a famous instance of content-based MIR. In such a system, the user's hummed query is converted into symbolic form to perform search operations in a similarly encoded database. The symbolic representation (e.g., textual, MIDI or vector data) is typically a quantized and simplified version of the sampled audio data, yielding to faster search algorithms and space requirements that can be met in real-life situations. In this thesis, we investigate geometric approaches to MIR. We first study some musicological properties often needed in MIR algorithms, and then give a literature review on traditional (e.g., string-matching-based) MIR algorithms and novel techniques based on geometry. We also introduce some concepts from digital image processing, namely the mathematical morphology, which we will use to develop and implement four algorithms for geometric music retrieval. The symbolic representation in the case of our algorithms is a binary 2-D image. We use various morphological pre- and post-processing operations on the query and the database images to perform template matching / pattern recognition for the images. The algorithms are basically extensions to classic image correlation and hit-or-miss transformation techniques used widely in template matching applications. They aim to be a future extension to the retrieval engine of C-BRAHMS, which is a research project of the Department of Computer Science at University of Helsinki.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Yhteenveto: Kärkölän likaantuneen pohjavesialueen matemaattinen mallinnus