Using Mathematical Morphology for Geometric Music Retrieval


Autoria(s): Karvonen, Mikko
Contribuinte(s)

Helsingfors universitet, matematisk-naturvetenskapliga fakulteten, institutionen för datavetenskap

University of Helsinki, Faculty of Science, Department of Computer Science

Helsingin yliopisto, matemaattis-luonnontieteellinen tiedekunta, tietojenkäsittelytieteen laitos

Data(s)

19/05/2008

Resumo

The usual task in music information retrieval (MIR) is to find occurrences of a monophonic query pattern within a music database, which can contain both monophonic and polyphonic content. The so-called query-by-humming systems are a famous instance of content-based MIR. In such a system, the user's hummed query is converted into symbolic form to perform search operations in a similarly encoded database. The symbolic representation (e.g., textual, MIDI or vector data) is typically a quantized and simplified version of the sampled audio data, yielding to faster search algorithms and space requirements that can be met in real-life situations. In this thesis, we investigate geometric approaches to MIR. We first study some musicological properties often needed in MIR algorithms, and then give a literature review on traditional (e.g., string-matching-based) MIR algorithms and novel techniques based on geometry. We also introduce some concepts from digital image processing, namely the mathematical morphology, which we will use to develop and implement four algorithms for geometric music retrieval. The symbolic representation in the case of our algorithms is a binary 2-D image. We use various morphological pre- and post-processing operations on the query and the database images to perform template matching / pattern recognition for the images. The algorithms are basically extensions to classic image correlation and hit-or-miss transformation techniques used widely in template matching applications. They aim to be a future extension to the retrieval engine of C-BRAHMS, which is a research project of the Department of Computer Science at University of Helsinki.

Identificador

URN:NBN:fi-fe200808111827

http://hdl.handle.net/10138/21428

Idioma(s)

en

Publicador

Helsingin yliopisto

Helsingfors universitet

University of Helsinki

Direitos

This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.

Publikationen är skyddad av upphovsrätten. Den får läsas och skrivas ut för personligt bruk. Användning i kommersiellt syfte är förbjuden.

Julkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty.

Tipo

Master's thesis

Pro gradu

Pro gradu

Text