8 resultados para magnesium chloride

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The text is divided into three parts; Properties, Application and Safety of Ammonium Nitrate (AN) based fertilisers. In Properties, the structures and phase transitions of ammonium and potassium nitrate are reviewed. The consequences of phase transitions affect the proper use of fertilisers. Therefore the products must be stabilised against the volume changes and consequent loss of bulk density and hardness, formation of dust and finally caking of fertilisers. The effect of different stabilisers is discussed. Magnesium nitrate, ammonium sulphate and potassium nitrate are presented as a good compromise. In the Application part, the solid solutions in the systems (K+,NH4+)NO3- and (NH4+,K+)(Cl-,NO3-) are presented based on studies made with DSC and XRD. As there are clear limits for solute content in the solvent lattice, a number of disproportionation transitions exist in these process phases, e.g., N3 (solid solution isomorphous to NH4NO3-III) disproportionates to phases K3 (solid solution isomorphous to KNO3-III) and K2 (solid solution isomorphous to KNO3-II). In the crystallisation experiments, the formation of K3 depends upon temperature and the ratio K/(K+NH4). The formation of phases K3, N3, and K2 was modelled as a function of temperature and the mole ratios. In introducing chlorides, two distinct maxima for K3 were found. Confirmed with commercial potash samples, the variables affecting the reaction of potassium chloride with AN are the particle size, time, temperature, moisture content and amount of organic coating. The phase diagrams obtained by crystallisation studies were compared with a number of commercial fertilisers and, with regard to phase composition, the temperature and moisture content are critical when the formation and stability of solid solutions are considered. The temperature where the AN-based fertiliser is solidified affects the amount of compounds crystallised at that point. In addition, the temperature where the final moisture is evaporated affects the amount and type of solid solution formed at this temperature. The amount of remaining moisture affects the stability of the K3 phase. The K3 phase is dissolved by the moisture and recrystallised into the quantities of K3, which is stable at the temperature where the sample is kept. The remaining moisture should not be free; it should be bound as water in the final product. The temperatures during storage also affect the quantity of K3 phase. As presented in the figures, K3 phase is not stable at temperatu¬res below 30 °C. If the temperature is about 40 °C, the K3 phase can be formed due to the remaining moisture. In the Safety part, self-sustaining decomposition (SSD), oxidising and energetic properties of fertilisers are discussed. Based on the consequence analysis of SSD, early detection of decomposition in warehouses and proper temperature control in the manufacturing process is important. SSD and oxidising properties were found in compositions where K3 exists. It is assumed that potassium nitrate forms a solid matrix in which AN can decompose. The oxidising properties can be affected by the form of the product. Granular products are inherently less oxidising. Finally energetic properties are reviewed. The composition of the fertiliser has an importance based on theoretical calculations supported by experimental studies. Materials such as carbonates and sulphates act as diluents. An excess of ammonium ions acts as a fuel although this is debatable. Based on the experimental work, the physical properties have a major importance over the composition. A high bulk density is of key importance for detonation resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cation-Cl- cotransporter (CCC) family comprises of Na+-Cl- cotransporter (NCC), Na+-K+-2Cl- cotransporters (NKCC1-2), and four K+-Cl- cotransporters (KCC1-4). These proteins are involved in several physiological activities, such as cell volume regulation. In neuronal tissues, NKCC1 and KCC2 are important in determining the intracellular Cl- levels and hence the neuronal responses to inhibitory neurotransmitters GABA and glycine. One aim of the work was to elucidate the roles for CCC isoforms in the control of nervous system development. KCC2 mRNA was shown to be developmentally up-regulated and follow neuronal maturation, whereas NKCC1 and KCC4 transcripts were highly expressed in the proliferative zones of subcortical regions. KCC1 and KCC3 mRNA displayed low expression throughout the embryogenesis. These expression profiles suggest a role for CCC isoforms in maturation of synaptic responses and in the regulation of neuronal proliferation during embryogenesis. The major aim of this work was to study the biological consequences of KCC2-deficiency in the adult CNS, by generating transgenic mice retaining 15-20% of normal KCC2 levels. In addition, by using these mice as a tool for in vivo pharmacological analysis, we investigated the requirements for KCC2 in tonic versus phasic GABAA receptor-mediated inhibition. KCC2-deficient mice displayed normal reproduction and life span, but showed several behavioral abnormalities, including increased anxiety-like behavior, impaired performance in water maze, alterations in nociceptive processing, and increased seizure susceptibility. In contrast, the mice displayed apparently normal spontaneous locomotor activity and motor coordination. Pharmacological analysis of KCC2-deficient mice revealed reduced sensititivity to diazepam, but normal gaboxadol-induced sedation, neurosteroid hypnosis and alcohol-induced motor impairment. Electrophysiological recordings from CA1-CA3 subregions of the hippocampus showed that KCC2 deficiency affected the reversal potentials of both the phasic and tonic GABA currents, and that the tonic conductance was not affected. The results suggest that requirement for KCC2 in GABAergic neurotransmission may differ among several functional systems in the CNS, which is possibly due to the more critical role of KCC2 activity in phasic compared to tonic GABAergic inhibition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rare autosomal recessive disease congenital chloride diarrhea (CLD) is caused by mutations in the solute carrier family 26 member 3 (SLC26A3) gene on chromosome 7q22.3-31.1. SLC26A3 encodes for an apical epithelial chloride-bicarbonate exchanger, the intestinal loss of which leads to profuse chloride-rich diarrhea, and a tendency to hypochloremic and hypokalemic metabolic alkalosis. Although untreated CLD is usually lethal in early infancy, the development of salt substitution therapy with NaCl and KCl in the late 1960s made the disease treatable. While the salt substitution allows normal childhood growth and development in CLD, data on long-term outcome have remained unclarified. One of the world s highest incidences of CLD 1:30 000 to 1:40 000 occurs in Finland, and CLD is part of the Finnish disease heritage. We utilized a unique sample of Finnish patients to characterize the long-term outcome of CLD. Another purpose of this study was to search for novel manifestations of CLD based on the extraintestinal expression of the SLC26A3 gene. This study on a sample of 36 patients (ages 10-38) shows that the long-term outcome of treated CLD is favorable. In untreated or poorly treated cases, however, chronic contraction and metabolic imbalance may lead to renal injury and even to renal transplantation. Our results demonstrate a low-level expression of SLC26A3 in the human kidney. Although SLC26A3 may play a minor role in homeostasis, post-transplant recurrence of renal changes shows the unlikelihood of direct transporter modulation in the pathogenesis of CLD-related renal injury. Options to resolve the diarrheal symptoms of CLD have been limited. Unfortunately, our pilot trial indicated the inefficacy of oral butyrate as well. This study reveals novel manifestations of CLD. These include an increased risk for hyperuricemia, inguinal hernias, and probably for intestinal inflammation. The most notable finding of this study is CLD-associated male subfertility. This involves a low concentration of poorly motile spermatozoa with abnormal morphology, high seminal plasma chloride with a low pH, and a tendency to form spermatoceles. That SLC26A3 immunoexpression appeared at multiple sites of the male reproductive tract in part together with the main interacting proteins cystic fibrosis transmembrane conductance regulator (CFTR) and sodium-hydrogen exchanger 3 (NHE3) suggests novel sites for the cooperation of these proteins. As evidence of the cooperation, defects occurring in any of these transporters are associated with reduced male fertility. Together with a finding of high sweat chloride in CLD, this study provides novel data on extraintestinal actions of the SLC26A3 gene both in the male reproductive tract and in the sweat gland. These results provide the basis for future studies regarding the role of SLC26A3 in different tissues, especially in the male reproductive tract. Fortunately, normal spermatogenesis in CLD is likely to make artificial reproductive technologies to treat infertility and even make unassisted reproduction possible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seminal plasma (SP) is the fluid portion of semen, secreted by the epididymides and the accessory glands before and during ejaculation. The stallion s ejaculate is a series of jets that differ in sperm concentration, semen volume and biochemical composition. Before the actual ejaculation, a clear and watery pre-sperm fluid is secreted. The first three jets form the sperm-rich fractions, and contain ¾ of the total number of sperm. The semen volume and sperm concentration in each of the jets decrease towards the end of the ejaculation, and the last jets are sperm-poor fractions with a low sperm concentration. The aims of these studies were to examine the effects of the different SP fractions, and the presence of SP, on sperm survival during storage. Pre-sperm fluid, and semen fractions with a high (sperm-rich) and low (sperm-poor) sperm concentration were collected in five experiments. The levels of selected enzymes, electrolytes and proteins in different SP fractions were determined. These studies also aimed at assessing the individual variation in the levels of the selected SP components and in the effects of SP on spermatozoa. The association between the components of SP and semen quality, sperm longevity, and fertility was examined with a stepwise linear regression analysis. Compared to samples containing SP during storage, centrifugation and the subsequent removal of SP reduced sperm motility parameters during 24 h of cooled storage in all SP fractions, but sperm membrane integrity was not affected. Some of the measured post-thaw motility parameters were also higher in samples containing SP compared to samples stored without SP. In contrast, the proportion of DNA-damaged spermatozoa was greater in the samples stored with SP than those without SP, and this effect was seen in both sperm-rich and sperm-poor fractions. There were no differences in DNA integrity between fractions stored with SP, but the sperm-rich fraction showed less DNA damage than the sperm-poor fraction after SP removal. The differences between fractions in sperm motility after cooled storage were non-significant. The levels of alkaline phosphatase, acid phosphatase and β-glucuronidase were higher in the sperm-rich fractions compared to the sperm-poor fractions, while the concentrations of calcium and magnesium were higher in sperm-poor fractions than in sperm-rich fractions. The concentrations of sodium and chloride were highest in pre-sperm fluid. In the sperm-poor fraction, the level of potassium was associated with the maintenance of sperm motility during storage. The levels of alkaline and acid phosphatase were associated with sperm concentration and the total number of spermatozoa in the ejaculates. None of the measured SP components were correlated to the first cycle pregnancy rate. In summary, the removal of SP improved DNA integrity after cooled storage compared with samples containing SP. There were no differences in the maintenance of sperm motility between the sperm-rich and sperm-poor fractions and whole ejaculates during cooled storage, irrespective of the presence of SP. The lowest rate of DNA damage was found in the sperm-rich fractions stored without SP. In practice, the results presented in this thesis support the use of individual modifications of semen processing techniques for cooled transported semen from subfertile stallions.