19 resultados para litter weight
em Helda - Digital Repository of University of Helsinki
Resumo:
The aim was to analyse the growth and compositional development of the receptive and expressive lexicons between the ages 0,9 and 2;0 in the full-term (FT) and the very-low-birth-weight (VLBW) children who are acquiring Finnish. The associations between the expressive lexicon and grammar at 1;6 and 2;0 in the FT children were also studied. In addition, the language skills of the VLBW children at 2;0 were analysed, as well as the predictive value of early lexicon to the later language performance. Four groups took part in the studies: the longitudinal (N = 35) and cross-sectional (N = 146) samples of the FT children, and the longitudinal (N = 32) and cross-sectional (N = 66) samples of VLBW children. The data was gathered by applying of the structured parental rating method (the Finnish version of the Communicative Development Inventory), through analysis of the children´s spontaneous speech and by administering a a formal test (Reynell Developmental Language Scales). The FT children acquired their receptive lexicons earlier, at a faster rate and with larger individual variation than their expressive lexicons. The acquisition rate of the expressive lexicon increased from slow to faster in most children (91%). Highly parallel developmental paths for lexical semantic categories were detected in the receptive and expressive lexicons of the Finnish children when they were analysed in relation to the growth of the lexicon size, as described in the literature for children acquiring other languages. The emergence of grammar was closely associated with expressive lexical growth. The VLBW children acquired their receptive lexicons at a slower rate and had weaker language skills at 2;0 than the full-term children. The compositional development of both lexicons happened at a slower rate in the VLBW children when compared to the FT controls. However, when the compositional development was analysed in relation to the growth of lexicon size, this development occurred qualitatively in a nearly parallel manner in the VLBW children as in the FT children. Early receptive and expressive lexicon sizes were significantly associated with later language skills in both groups. The effect of the background variables (gender, length of the mother s basic education, birth weight) on the language development in the FT and the VLBW children differed. The results provide new information of early language acquisition by the Finnish FT and VLBW children. The results support the view that the early acquisition of the semantic lexical categories is related to lexicon growth. The current findings also propose that the early grammatical acquisition is closely related to the growth of expressive vocabulary size. The language development of the VLBW children should be followed in clinical work.
Resumo:
The aim of this study was to explore soil microbial activities related to C and N cycling and the occurrence and concentrations of two important groups of plant secondary compounds, terpenes and phenolic compounds, under silver birch (Betula pendula Roth), Norway spruce (Picea abies (L.) Karst) and Scots pine (Pinus sylvestris L.) as well as to study the effects of volatile monoterpenes and tannins on soil microbial activities. The study site, located in Kivalo, northern Finland, included ca. 70-year-old adjacent stands dominated by silver birch, Norway spruce and Scots pine. Originally the soil was very probably similar in all three stands. All forest floor layers (litter (L), fermentation layer (F) and humified layer (H)) under birch and spruce showed higher rates of CO2 production, greater net mineralisation of nitrogen and higher amounts of carbon and nitrogen in microbial biomass than did the forest floor layers under pine. Concentrations of mono-, sesqui-, di- and triterpenes were higher under both conifers than under birch, while the concentration of total water-soluble phenolic compounds as well as the concentration of condensed tannins tended to be higher or at least as high under spruce as under birch or pine. In general, differences between tree species in soil microbial activities and in concentrations of secondary compounds were smaller in the H layer than in the upper layers. The rate of CO2 production and the amount of carbon in the microbial biomass correlated highly positively with the concentration of total water-soluble phenolic compounds and positively with the concentration of condensed tannins. Exposure of soil to volatile monoterpenes and tannins extracted and fractionated from spruce and pine needles affected carbon and nitrogen transformations in soil, but the effects were dependent on the compound and its molecular structure. Monoterpenes decreased net mineralisation of nitrogen and probably had a toxic effect on part of the microbial population in soil, while another part of the microbes seemed to be able to use monoterpenes as a carbon source. With tannins, low-molecular-weight compounds (also compounds other than tannins) increased soil CO2 production and nitrogen immobilisation by soil microbes while the higher-molecular-weight condensed tannins had inhibitory effects. In conclusion, plant secondary compounds may have a great potential in regulation of C and N transformations in forest soils, but the real magnitude of their significance in soil processes is impossible to estimate.
Resumo:
The project consisted of two long-term follow-up studies of preterm children addressing the question whether intrauterine growth restriction affects the outcome. Assessment at 5 years of age of 203 children with a birth weight less than 1000 g born in Finland in 1996-1997 showed that 9% of the children had cognitive impairment, 14% cerebral palsy, and 4% needed a hearing aid. The intelligence quotient was lower (p<0.05) than the reference value. Thus, 20% exhibited major, 19% minor disabilities, and 61% had no functional abnormalities. Being small for gestational age (SGA) was associated with sub-optimal growth later. In children born before 27 gestational weeks, the SGA had more neuropsychological disabilities than those appropriate for gestational age (AGA). In another cohort with birth weight less than 1500 g assessed at 5 years of age, echocardiography showed a thickened interventricular septum and a decreased left ventricular end-diastolic diameter in both SGA and AGA born children. They also had a higher systolic blood pressure than the reference. Laser-Doppler flowmetry showed different endothelium-dependent and -independent vasodilation responses in the AGA children compared to those of the controls. SGA was not associated with cardio-vascular abnormalities. Auditory event-related potentials (AERPs) were recorded using an oddball paradigm with frequency deviants (standard tone 500 Hz and deviant 750-Hz with 10% probability). At term, the P350 was smaller in SGA and AGA infants than in controls. At 12 months, the automatic change detection peak (mismatch negativity, MMN) was observed in the controls. However, the pre-term infants had a difference positivity that correlated with their neurodevelopment scores. At 5 years of age, the P1-deflection, which reflects primary auditory processing, was smaller, and the MMN larger in the preterm than in the control children. Even with a challenging paradigm or a distraction paradigm, P1 was smaller in the preterm than in the control children. The SGA and AGA children showed similar AERP responses. Prematurity is a major risk factor for abnormal brain development. Preterm children showed signs of cardiovascular abnormality suggesting that prematurity per se may carry a risk for later morbidity. The small positive amplitudes in AERPs suggest persisting altered auditory processing in the preterm in-fants.
Resumo:
Pristine peatlands are carbon (C) accumulating wetland ecosystems sustained by a high water level (WL) and consequent anoxia that slows down decomposition. Persistent WL drawdown as a response to climate and/or land-use change directly affects decomposition: increased oxygenation stimulates decomposition of the old C (peat) sequestered under prior anoxic conditions. Responses of the new C (plant litter) in terms of quality, production and decomposability, and the consequences for the whole C cycle of peatlands are not fully understood. WL drawdown induces changes in plant community resulting in shift in dominance from Sphagnum and graminoids to shrubs and trees. There is increasing evidence that the indirect effects of WL drawdown via the changes in plant communities will have more impact on the ecosystem C cycling than any direct effects. The aim of this study is to disentangle the direct and indirect effects of WL drawdown on the new C by measuring the relative importance of 1) environmental parameters (WL depth, temperature, soil chemistry) and 2) plant community composition on litter production, microbial activity, litter decomposition rates and, consequently, on the C accumulation. This information is crucial for modelling C cycle under changing climate and/or land-use. The effects of WL drawdown were tested in a large-scale experiment with manipulated WL at two time scales and three nutrient regimes. Furthermore, the effect of climate on litter decomposability was tested along a north-south gradient. Additionally, a novel method for estimating litter chemical quality and decomposability was explored by combining Near infrared spectroscopy with multivariate modelling. WL drawdown had direct effects on litter quality, microbial community composition and activity and litter decomposition rates. However, the direct effects of WL drawdown were overruled by the indirect effects via changes in litter type composition and production. Short-term (years) responses to WL drawdown were small. In long-term (decades), dramatically increased litter inputs resulted in large accumulation of organic matter in spite of increased decomposition rates. Further, the quality of the accumulated matter greatly changed from that accumulated in pristine conditions. The response of a peatland ecosystem to persistent WL drawdown was more pronounced at sites with more nutrients. The study demonstrates that the shift in vegetation composition as a response to climate and/or land-use change is the main factor affecting peatland ecosystem C cycle and thus dynamic vegetation is a necessity in any models applied for estimating responses of C fluxes to changes in the environment. The time scale for vegetation changes caused by hydrological changes needs to extend to decades. This study provides grouping of litter types (plant species and part) into functional types based on their chemical quality and/or decomposability that the models could utilize. Further, the results clearly show a drop in soil temperature as a response to WL drawdown when an initially open peatland converts into a forest ecosystem, which has not yet been considered in the existing models.
Resumo:
Major advances in the treatment of preterm infants have occurred during the last three decades. Survival rates have increased, and the first generations of preterm infants born at very low birth weight (VLBW; less than 1500 g) who profited from modern neonatal intensive care are now in young adulthood. The literature shows that VLBW children achieve on average lower scores on cognitive tests, even after exclusion of individuals with obvious neurosensory deficits. Evidence also exists for an increased risk in VLBW children for various neuropsychiatric disorders such as attention-deficit hyperactivity disorder (ADHD) and related behavioral symptoms. Up till now, studies extending into adulthood are sparse, and it remains to be seen whether these problems persist into adulthood. The aim of this thesis was to study ADHD-related symptoms and cognitive and executive functioning in young adults born at VLBW. In addition, we aimed to study sleep disturbances, known to adversely affect both cognition and attention. We hypothesized that preterm birth at VLBW interferes with early brain development in a way that alters the neuropsychological phenotype; this may manifest itself as ADHD symptoms and impaired cognitive abilities in young adulthood. In this cohort study from a geographically defined region, we studied 166 VLBW adults and 172 term-born controls born from 1978 through 1985. At ages 18 to 27 years, the study participants took part in a clinic study during which their physical and psychological health was assessed in detail. Three years later, 213 of these individuals participated in a follow-up. The current study is part of a larger research project (The Helsinki Study of Very Low Birth Weight Adults), and the measurements of interest for this particular study include the following: 1) The Adult Problem Questionnaire (APQ), a self-rating scale of ADHD-related symptoms in adults; 2) A computerized cognitive test battery designed for population studies (CogState®) which measures core cognitive abilities such as reaction time, working memory, and visual learning; 3) Sleep assessment by actigraphy, the Basic Nordic Sleep Questionnaire, and the Morningness-Eveningness Questionnaire. Actigraphs are wrist-worn accelerometers that separate sleep from wakefulness by registering body movements. Contrary to expectations, VLBW adults as a group reported no more ADHD-related behavioral symptoms than did controls. Further subdivision of the VLBW group into SGA (small for gestational age) and AGA (appropriate for gestational age) subgroups, however, revealed more symptoms on ADHD subscales pertaining to executive dysfunction and emotional instability among those born SGA. Thus, it seems that intrauterine growth retardation (for which SGA served as a proxy) is a more essential predictor for self-perceived ADHD symptoms in adulthood than is VLBW birth as such. In line with observations from other cohorts, the VLBW adults reported less risk-taking behavior in terms of substance use (alcohol, smoking, and recreational drugs), a finding reassuring for the VLBW individuals and their families. On the cognitive test, VLBW adults free from neurosensory deficits had longer reaction times than did term-born peers on all tasks included in the test battery, and lower accuracy on the learning task, with no discernible effect of SGA status over and above the effect of VLBW. Altogether, on a group level, even high-functioning VLBW adults show subtle deficits in psychomotor processing speed, visual working memory, and learning abilities. The sleep studies provided no evidence for differences in sleep quality or duration between the two groups. The VLBW adults were, however, at more than two-fold higher risk for sleep-disordered breathing (in terms of chronic snoring). Given the link between sleep-disordered breathing and health sequelae, these results suggest that VLBW individuals may benefit from an increased awareness among clinicians of this potential problem area. An unexpected finding from the sleep studies was the suggestion of an advanced sleep phase: The VLBW adults went to bed earlier according to the actigraphy registrations and also reported earlier wake-up times on the questionnaire. In further study of this issue in conjunction with the follow-up three years later, the VLBW group reported higher levels of morningness propensity, further corroborating the preliminary findings of an advanced sleep phase. Although the clinical implications are not entirely clear, the issue may be worth further study, since circadian rhythms are closely related to health and well-being. In sum, we believe that increased understanding of long-term outcomes after VLBW, and identification of areas and subgroups that are particularly vulnerable, will allow earlier recognition of potential problems and ultimately lead to improved prevention strategies.
Resumo:
Understanding the responses of species and ecosystems to human-induced global environmental change has become a high research priority. The main aim of this thesis was to investigate how certain environmental factors that relate to global change affect European aspen (Populus tremula), a keystone species in boreal forests, and hybrid aspen (P. tremula × P. tremuloides), cultivated in commercial plantations. The main points under consideration were the acclimatization potential of aspen through changes in leaf morphology, as well as effects on growth, leaf litter chemistry and decomposition. The thesis is based on two experiments, in which young aspen (< 1 year) were exposed either to an atmospheric pollutant [elevated ozone (O3)] or variable resource availability [water, nitrogen (N)]; and two field studies, in which mature trees (> 8 years) were growing in environments exposed to multiple environmental stress factors (roadside and urban environments). The field studies included litter decomposition experiments. The results show that young aspen, especially the native European aspen, was sensitive to O3 in terms of visible leaf injuries. Elevated O3 resulted in reduced biomass allocation to roots and accelerated leaf senescence, suggesting negative effects on growth in the long term. Water and N availability modified the frost hardening of young aspen: High N supply, especially when combined with drought, postponed the development of frost hardiness, which in turn may predispose trees to early autumn frosts. This effect was more pronounced in European aspen. The field studies showed that mature aspen acclimatized to roadside and urban environments by producing more xeromorphic leaves. Leaf morphology was also observed to vary in response to interannual climatic variation, which further indicates the ability of aspen for phenotypic plasticity. Intraspecific variation was found in several of the traits measured, although intraspecific differences in response to the abiotic factors examined were generally small throughout the studies. However, some differences between clones were found in sensitivity to O3 and the roadside environment. Aspen leaf litter decomposition was retarded in the roadside environment, but only initially. By contrast, decomposition was found to be faster in the urban than the rural environment throughout the study. The higher quality of urban litter (higher in N, lower in lignin and phenolics), as well as higher temperature, N deposition and humus pH at the urban site were factors likely to promote decay. The phenotypic plasticity combined with intraspecific variation found in the studies imply that aspen has potential for withstanding environmental changes, although some global change factors, such as rising O3 levels, may adversely affect its performance. The results also suggest that the multiple environmental changes taking place in urban areas which correspond closely with the main drivers of global change can modify ecosystem functioning by promoting litter decomposition, mediated partly by alterations in leaf litter quality.