4 resultados para error model
em Helda - Digital Repository of University of Helsinki
Resumo:
Digital elevation models (DEMs) have been an important topic in geography and surveying sciences for decades due to their geomorphological importance as the reference surface for gravita-tion-driven material flow, as well as the wide range of uses and applications. When DEM is used in terrain analysis, for example in automatic drainage basin delineation, errors of the model collect in the analysis results. Investigation of this phenomenon is known as error propagation analysis, which has a direct influence on the decision-making process based on interpretations and applications of terrain analysis. Additionally, it may have an indirect influence on data acquisition and the DEM generation. The focus of the thesis was on the fine toposcale DEMs, which are typically represented in a 5-50m grid and used in the application scale 1:10 000-1:50 000. The thesis presents a three-step framework for investigating error propagation in DEM-based terrain analysis. The framework includes methods for visualising the morphological gross errors of DEMs, exploring the statistical and spatial characteristics of the DEM error, making analytical and simulation-based error propagation analysis and interpreting the error propagation analysis results. The DEM error model was built using geostatistical methods. The results show that appropriate and exhaustive reporting of various aspects of fine toposcale DEM error is a complex task. This is due to the high number of outliers in the error distribution and morphological gross errors, which are detectable with presented visualisation methods. In ad-dition, the use of global characterisation of DEM error is a gross generalisation of reality due to the small extent of the areas in which the decision of stationarity is not violated. This was shown using exhaustive high-quality reference DEM based on airborne laser scanning and local semivariogram analysis. The error propagation analysis revealed that, as expected, an increase in the DEM vertical error will increase the error in surface derivatives. However, contrary to expectations, the spatial au-tocorrelation of the model appears to have varying effects on the error propagation analysis depend-ing on the application. The use of a spatially uncorrelated DEM error model has been considered as a 'worst-case scenario', but this opinion is now challenged because none of the DEM derivatives investigated in the study had maximum variation with spatially uncorrelated random error. Sig-nificant performance improvement was achieved in simulation-based error propagation analysis by applying process convolution in generating realisations of the DEM error model. In addition, typology of uncertainty in drainage basin delineations is presented.
Resumo:
This thesis addresses modeling of financial time series, especially stock market returns and daily price ranges. Modeling data of this kind can be approached with so-called multiplicative error models (MEM). These models nest several well known time series models such as GARCH, ACD and CARR models. They are able to capture many well established features of financial time series including volatility clustering and leptokurtosis. In contrast to these phenomena, different kinds of asymmetries have received relatively little attention in the existing literature. In this thesis asymmetries arise from various sources. They are observed in both conditional and unconditional distributions, for variables with non-negative values and for variables that have values on the real line. In the multivariate context asymmetries can be observed in the marginal distributions as well as in the relationships of the variables modeled. New methods for all these cases are proposed. Chapter 2 considers GARCH models and modeling of returns of two stock market indices. The chapter introduces the so-called generalized hyperbolic (GH) GARCH model to account for asymmetries in both conditional and unconditional distribution. In particular, two special cases of the GARCH-GH model which describe the data most accurately are proposed. They are found to improve the fit of the model when compared to symmetric GARCH models. The advantages of accounting for asymmetries are also observed through Value-at-Risk applications. Both theoretical and empirical contributions are provided in Chapter 3 of the thesis. In this chapter the so-called mixture conditional autoregressive range (MCARR) model is introduced, examined and applied to daily price ranges of the Hang Seng Index. The conditions for the strict and weak stationarity of the model as well as an expression for the autocorrelation function are obtained by writing the MCARR model as a first order autoregressive process with random coefficients. The chapter also introduces inverse gamma (IG) distribution to CARR models. The advantages of CARR-IG and MCARR-IG specifications over conventional CARR models are found in the empirical application both in- and out-of-sample. Chapter 4 discusses the simultaneous modeling of absolute returns and daily price ranges. In this part of the thesis a vector multiplicative error model (VMEM) with asymmetric Gumbel copula is found to provide substantial benefits over the existing VMEM models based on elliptical copulas. The proposed specification is able to capture the highly asymmetric dependence of the modeled variables thereby improving the performance of the model considerably. The economic significance of the results obtained is established when the information content of the volatility forecasts derived is examined.
Resumo:
This paper is concerned with using the bootstrap to obtain improved critical values for the error correction model (ECM) cointegration test in dynamic models. In the paper we investigate the effects of dynamic specification on the size and power of the ECM cointegration test with bootstrap critical values. The results from a Monte Carlo study show that the size of the bootstrap ECM cointegration test is close to the nominal significance level. We find that overspecification of the lag length results in a loss of power. Underspecification of the lag length results in size distortion. The performance of the bootstrap ECM cointegration test deteriorates if the correct lag length is not used in the ECM. The bootstrap ECM cointegration test is therefore not robust to model misspecification.
Resumo:
The aim of this dissertation is to model economic variables by a mixture autoregressive (MAR) model. The MAR model is a generalization of linear autoregressive (AR) model. The MAR -model consists of K linear autoregressive components. At any given point of time one of these autoregressive components is randomly selected to generate a new observation for the time series. The mixture probability can be constant over time or a direct function of a some observable variable. Many economic time series contain properties which cannot be described by linear and stationary time series models. A nonlinear autoregressive model such as MAR model can a plausible alternative in the case of these time series. In this dissertation the MAR model is used to model stock market bubbles and a relationship between inflation and the interest rate. In the case of the inflation rate we arrived at the MAR model where inflation process is less mean reverting in the case of high inflation than in the case of normal inflation. The interest rate move one-for-one with expected inflation. We use the data from the Livingston survey as a proxy for inflation expectations. We have found that survey inflation expectations are not perfectly rational. According to our results information stickiness play an important role in the expectation formation. We also found that survey participants have a tendency to underestimate inflation. A MAR model has also used to model stock market bubbles and crashes. This model has two regimes: the bubble regime and the error correction regime. In the error correction regime price depends on a fundamental factor, the price-dividend ratio, and in the bubble regime, price is independent of fundamentals. In this model a stock market crash is usually caused by a regime switch from a bubble regime to an error-correction regime. According to our empirical results bubbles are related to a low inflation. Our model also imply that bubbles have influences investment return distribution in both short and long run.