16 resultados para counting efficiency
em Helda - Digital Repository of University of Helsinki
Resumo:
Nucleation is the first step in the formation of a new phase inside a mother phase. Two main forms of nucleation can be distinguished. In homogeneous nucleation, the new phase is formed in a uniform substance. In heterogeneous nucleation, on the other hand, the new phase emerges on a pre-existing surface (nucleation site). Nucleation is the source of about 30% of all atmospheric aerosol which in turn has noticeable health effects and a significant impact on climate. Nucleation can be observed in the atmosphere, studied experimentally in the laboratory and is the subject of ongoing theoretical research. This thesis attempts to be a link between experiment and theory. By comparing simulation results to experimental data, the aim is to (i) better understand the experiments and (ii) determine where the theory needs improvement. Computational fluid dynamics (CFD) tools were used to simulate homogeneous onecomponent nucleation of n-alcohols in argon and helium as carrier gases, homogeneous nucleation in the water-sulfuric acid-system, and heterogeneous nucleation of water vapor on silver particles. In the nucleation of n-alcohols, vapor depletion, carrier gas effect and carrier gas pressure effect were evaluated, with a special focus on the pressure effect whose dependence on vapor and carrier gas properties could be specified. The investigation of nucleation in the water-sulfuric acid-system included a thorough analysis of the experimental setup, determining flow conditions, vapor losses, and nucleation zone. Experimental nucleation rates were compared to various theoretical approaches. We found that none of the considered theoretical descriptions of nucleation captured the role of water in the process at all relative humidities. Heterogeneous nucleation was studied in the activation of silver particles in a TSI 3785 particle counter which uses water as its working fluid. The role of the contact angle was investigated and the influence of incoming particle concentrations and homogeneous nucleation on counting efficiency determined.
Resumo:
Various reasons, such as ethical issues in maintaining blood resources, growing costs, and strict requirements for safe blood, have increased the pressure for efficient use of resources in blood banking. The competence of blood establishments can be characterized by their ability to predict the volume of blood collection to be able to provide cellular blood components in a timely manner as dictated by hospital demand. The stochastically varying clinical need for platelets (PLTs) sets a specific challenge for balancing supply with requests. Labour has been proven a primary cost-driver and should be managed efficiently. International comparisons of blood banking could recognize inefficiencies and allow reallocation of resources. Seventeen blood centres from 10 countries in continental Europe, Great Britain, and Scandinavia participated in this study. The centres were national institutes (5), parts of the local Red Cross organisation (5), or integrated into university hospitals (7). This study focused on the departments of blood component preparation of the centres. The data were obtained retrospectively by computerized questionnaires completed via Internet for the years 2000-2002. The data were used in four original articles (numbered I through IV) that form the basis of this thesis. Non-parametric data envelopment analysis (DEA, II-IV) was applied to evaluate and compare the relative efficiency of blood component preparation. Several models were created using different input and output combinations. The focus of comparisons was on the technical efficiency (II-III) and the labour efficiency (I, IV). An empirical cost model was tested to evaluate the cost efficiency (IV). Purchasing power parities (PPP, IV) were used to adjust the costs of the working hours and to make the costs comparable among countries. The total annual number of whole blood (WB) collections varied from 8,880 to 290,352 in the centres (I). Significant variation was also observed in the annual volume of produced red blood cells (RBCs) and PLTs. The annual number of PLTs produced by any method varied from 2,788 to 104,622 units. In 2002, 73% of all PLTs were produced by the buffy coat (BC) method, 23% by aphaeresis and 4% by the platelet-rich plasma (PRP) method. The annual discard rate of PLTs varied from 3.9% to 31%. The mean discard rate (13%) remained in the same range throughout the study period and demonstrated similar levels and variation in 2003-2004 according to a specific follow-up question (14%, range 3.8%-24%). The annual PLT discard rates were, to some extent, associated with production volumes. The mean RBC discard rate was 4.5% (range 0.2%-7.7%). Technical efficiency showed marked variation (median 60%, range 41%-100%) among the centres (II). Compared to the efficient departments, the inefficient departments used excess labour resources (and probably) production equipment to produce RBCs and PLTs. Technical efficiency tended to be higher when the (theoretical) proportion of lost WB collections (total RBC+PLT loss) from all collections was low (III). The labour efficiency varied remarkably, from 25% to 100% (median 47%) when working hours were the only input (IV). Using the estimated total costs as the input (cost efficiency) revealed an even greater variation (13%-100%) and overall lower efficiency level compared to labour only as the input. In cost efficiency only, the savings potential (observed inefficiency) was more than 50% in 10 departments, whereas labour and cost savings potentials were both more than 50% in six departments. The association between department size and efficiency (scale efficiency) could not be verified statistically in the small sample. In conclusion, international evaluation of the technical efficiency in component preparation departments revealed remarkable variation. A suboptimal combination of manpower and production output levels was the major cause of inefficiency, and the efficiency did not directly relate to production volume. Evaluation of the reasons for discarding components may offer a novel approach to study efficiency. DEA was proven applicable in analyses including various factors as inputs and outputs. This study suggests that analytical models can be developed to serve as indicators of technical efficiency and promote improvements in the management of limited resources. The work also demonstrates the importance of integrating efficiency analysis into international comparisons of blood banking.
Resumo:
Nitrogen (N) is one of the main inputs in cereal cultivation and as more than half of the arable land in Finland is used for cereal production, N has contributed substantially to agricultural pollution through fertilizer leaching and runoff. Based on this global phenomenon, the European Community has launched several directives to reduce agricultural emissions to the environment. Trough such measures, and by using economic incentives, it is expected that northern European agricultural practices will, in the future, include reduced N fertilizer application rates. Reduced use of N fertilizer is likely to decrease both production costs and pollution, but could also result in reduced yields and quality if crops experience temporary N deficiency. Therefore, more efficient N use in cereal production, to minimize pollution risks and maximize farmer income, represents a current challenge for agronomic research in the northern growing areas. The main objective of this study was to determine the differences in nitrogen use efficiency (NUE) among spring cereals grown in Finland. Additional aims were to characterize the multiple roles of NUE by analysing the extent of variation in NUE and its component traits among different cultivars, and to understand how other physiological traits, especially radiation use efficiency (RUE) and light interception, affect and interact with the main components of NUE and contribute to differences among cultivars. This study included cultivars of barley (Hordeum vulgare L.), oat (Avena sativa L.) and wheat (Triticum aestivum L.). Field experiments were conducted between 2001 and 2004 at Jokioinen, in Finland. To determine differences in NUE among cultivars and gauge the achievements of plant breeding in NUE, 17-18 cultivars of each of the three cereal species released between 1909 and 2002 were studied. Responses to nitrogen of landraces, old cultivars and modern cultivars of each cereal species were evaluated under two N regimes (0 and 90 kg N ha-1). Results of the study revealed that modern wheat, oat and barley cultivars had similar NUE values under Finnish growing conditions and only results from a wider range of cultivars indicated that wheat cultivars could have lower NUE than the other species. There was a clear relationship between nitrogen uptake efficiency (UPE) and NUE in all species whereas nitrogen utilization efficiency (UTE) had a strong positive relationship with NUE only for oat. UTE was clearly lower in wheat than in other species. Other traits related to N translocation indicated that wheat also had a lower harvest index, nitrogen harvest index and nitrogen remobilisation efficiency and therefore its N translocation efficiency was confirmed to be very low. On the basis of these results there appears to be potential and also a need for improvement in NUE. These results may help understand the underlying physiological differences in NUE and could help to identify alternative production options, such as the different roles that species can play in crop rotations designed to meet the demands of modern agricultural practices.
Resumo:
The purpose of this study was to evaluate intensity, productivity and efficiency in agriculture in Finland and show implications for N and P fertiliser management. Environmental concerns relating to agricultural production have been and still are focused on arguments about policies that affect agriculture. These policies constrain production while demand for agricultural products such as food, fibre and energy continuously increase. Therefore the importance of increasing productivity is a great challenge to agriculture. Over the last decades producers have experienced several large changes in the production environment such as the policy reform when Finland joined the EU 1995. Other and market changes occurred with the further EU enlargement with neighbouring countries in 2005 and with the decoupling of supports over the 2006-2007 period. Decreasing prices a decreased number of farmers and decreased profitability in agricultural production have resulted from these changes and constraints and of technological development. It is known that the accession to the EU 1995 would herald changes in agriculture. Especially of interest was how the sudden changes in prices of commodities on especially those of cereals, decreased by 60%, would influence agricultural production. The knowledge of properties of the production function increased in importance as a consequence of price changes. A research on the economic instruments to regulate productions was carried out and combined with earlier studies in paper V. In paper I the objective was to compare two different technologies, the conventional farming and the organic farming, determine differences in productivity and technical efficiency. In addition input specific or environmental efficiencies were analysed. The heterogeneity of agricultural soils and its implications were analysed in article II. In study III the determinants of technical inefficiency were analysed. The aspects and possible effects of the instability in policies due to a partial decoupling of production factors and products were studied in paper IV. Consequently connection between technical efficiency based on the turnover and the sales return was analysed in this study. Simple economic instruments such as fertiliser taxes have a direct effect on fertiliser consumption and indirectly increase the value of organic fertilisers. However, fertiliser taxes, do not fully address the N and P management problems adequately and are therefore not suitable for nutrient management improvements in general. Productivity of organic farms is lower on average than conventional farms and the difference increases when looking at selling returns only. The organic sector needs more research and development on productivity. Livestock density in organic farming increases productivity, however, there is an upper limit to livestock densities on organic farms and therefore nutrient on organic farms are also limited. Soil factors affects phosphorous and nitrogen efficiency. Soils like sand and silt have lower input specific overall efficiency for nutrients N and P. Special attention is needed for the management on these soils. Clay soils and soils with moderate clay content have higher efficiency. Soil heterogeneity is cause for an unavoidable inefficiency in agriculture.
Resumo:
This thesis studies the informational efficiency of the European Union emission allowance (EUA) market. In an efficient market, the market price is unpredictable and profits above average are impossible in the long run. The main research problem is does the EUA price follow a random walk. The method is an econometric analysis of the price series, which includes an autocorrelation coefficient test and a variance ratio test. The results reveal that the price series is autocorrelated and therefore a nonrandom walk. In order to find out the extent of predictability, the price series is modelled with an autoregressive model. The conclusion is that the EUA price is autocorrelated only to a small degree and that the predictability cannot be used to make extra profits. The EUA market is therefore considered informationally efficient, although the price series does not fulfill the requirements of a random walk. A market review supports the conclusion, but it is clear that the maturing of the market is still in process.
Resumo:
The removal of non-coding sequences, introns, is an essential part of messenger RNA processing. In most metazoan organisms, the U12-type spliceosome processes a subset of introns containing highly conserved recognition sequences. U12-type introns constitute less than 0,5% of all introns and reside preferentially in genes related to information processing functions, as opposed to genes encoding for metabolic enzymes. It has previously been shown that the excision of U12-type introns is inefficient compared to that of U2-type introns, supporting the model that these introns could provide a rate-limiting control for gene expression. The low efficiency of U12-type splicing is believed to have important consequences to gene expression by limiting the production of mature mRNAs from genes containing U12-type introns. The inefficiency of U12-type splicing has been attributed to the low abundance of the components of the U12-type spliceosome in cells, but this hypothesis has not been proven. The aim of the first part of this work was to study the effect of the abundance of the spliceosomal snRNA components on splicing. Cells with a low abundance of the U12-type spliceosome were found to inefficiently process U12-type introns encoded by a transfected construct, but the expression levels of endogenous genes were not found to be affected by the abundance of the U12-type spliceosome. However, significant levels of endogenous unspliced U12-type intron-containing pre-mRNAs were detected in cells. Together these results support the idea that U12-type splicing may limit gene expression in some situations. The inefficiency of U12-type splicing has also promoted the idea that the U12-type spliceosome may control gene expression, limiting the mRNA levels of some U12-type intron-containing genes. While the identities of the primary target genes that contain U12-type introns are relatively well known, little has previously been known about the downstream genes and pathways potentially affected by the efficiency of U12-type intron processing. Here, the effects of U12-type splicing efficiency on a whole organism were studied in a Drosophila line with a mutation in an essential U12-type spliceosome component. Genes containing U12-type introns showed variable gene-specific responses to the splicing defect, which points to variation in the susceptibility of different genes to changes in splicing efficiency. Surprisingly, microarray screening revealed that metabolic genes were enriched among downstream effects, and that the phenotype could largely be attributed to one U12-type intron-containing mitochondrial gene. Gene expression control by the U12-type spliceosome could thus have widespread effects on metabolic functions in the organism. The subcellular localization of the U12-type spliceosome components was studied as a response to a recent dispute on the localization of the U12-type spliceosome. All components studied were found to be nuclear indicating that the processing of U12-type introns occurs within the nucleus, thus clarifying a question central to the field. The results suggest that the U12-type spliceosome can limit the expression of genes that contain U12-type introns in a gene-specific manner. Through its limiting role in pre-mRNA processing, the U12-type splicing activity can affect specific genetic pathways, which in the case of Drosophila are involved in metabolic functions.
Resumo:
The structure and operation of CdTe, CdZnTe and Si pixel detectors based on crystalline semiconductors, bump bonding and CMOS technology and developed mainly at Oy Simage Ltd. And Oy Ajat Ltd., Finland for X- and gamma ray imaging are presented. This detector technology evolved from the development of Si strip detectors at the Finnish Research Institute for High Energy Physics (SEFT) which later merged with other physics research units to form the Helsinki Institute of Physics (HIP). General issues of X-ray imaging such as the benefits of the method of direct conversion of X-rays to signal charge in comparison to the indirect method and the pros and cons of photon counting vs. charge integration are discussed. A novel design of Si and CdTe pixel detectors and the analysis of their imaging performance in terms of SNR, MTF, DQE and dynamic range are presented in detail. The analysis shows that directly converting crystalline semiconductor pixel detectors operated in the charge integration mode can be used in X-ray imaging very close to the theoretical performance limits in terms of efficiency and resolution. Examples of the application of the developed imaging technology to dental intra oral and panoramic and to real time X-ray imaging are given. A CdTe photon counting gamma imager is introduced. A physical model to calculate the photo peak efficiency of photon counting CdTe pixel detectors is developed and described in detail. Simulation results indicates that the charge sharing phenomenon due to diffusion of signal charge carriers limits the pixel size of photon counting detectors to about 250 μm. Radiation hardness issues related to gamma and X-ray imaging detectors are discussed.
Resumo:
A measurement of the top-quark pair-production cross section in ppbar collisions at sqrt{s}=1.96 TeV using data corresponding to an integrated luminosity of 1.12/fb collected with the Collider Detector at Fermilab is presented. Decays of top-quark pairs into the final states e nu + jets and mu nu + jets are selected, and the cross section and the b-jet identification efficiency are determined using a new measurement technique which requires that the measured cross sections with exactly one and multiple identified b-quarks from the top-quark decays agree. Assuming a top-quark mass of 175 GeV/c^2, a cross section of 8.5+/-0.6(stat.)+/-0.7(syst.) pb is measured.
Resumo:
Gene mapping is a systematic search for genes that affect observable characteristics of an organism. In this thesis we offer computational tools to improve the efficiency of (disease) gene-mapping efforts. In the first part of the thesis we propose an efficient simulation procedure for generating realistic genetical data from isolated populations. Simulated data is useful for evaluating hypothesised gene-mapping study designs and computational analysis tools. As an example of such evaluation, we demonstrate how a population-based study design can be a powerful alternative to traditional family-based designs in association-based gene-mapping projects. In the second part of the thesis we consider a prioritisation of a (typically large) set of putative disease-associated genes acquired from an initial gene-mapping analysis. Prioritisation is necessary to be able to focus on the most promising candidates. We show how to harness the current biomedical knowledge for the prioritisation task by integrating various publicly available biological databases into a weighted biological graph. We then demonstrate how to find and evaluate connections between entities, such as genes and diseases, from this unified schema by graph mining techniques. Finally, in the last part of the thesis, we define the concept of reliable subgraph and the corresponding subgraph extraction problem. Reliable subgraphs concisely describe strong and independent connections between two given vertices in a random graph, and hence they are especially useful for visualising such connections. We propose novel algorithms for extracting reliable subgraphs from large random graphs. The efficiency and scalability of the proposed graph mining methods are backed by extensive experiments on real data. While our application focus is in genetics, the concepts and algorithms can be applied to other domains as well. We demonstrate this generality by considering coauthor graphs in addition to biological graphs in the experiments.
Resumo:
The objectives of this study were to make a detailed and systematic empirical analysis of microfinance borrowers and non-borrowers in Bangladesh and also examine how efficiency measures are influenced by the access to agricultural microfinance. In the empirical analysis, this study used both parametric and non-parametric frontier approaches to investigate differences in efficiency estimates between microfinance borrowers and non-borrowers. This thesis, based on five articles, applied data obtained from a survey of 360 farm households from north-central and north-western regions in Bangladesh. The methods used in this investigation involve stochastic frontier (SFA) and data envelopment analysis (DEA) in addition to sample selectivity and limited dependent variable models. In article I, technical efficiency (TE) estimation and identification of its determinants were performed by applying an extended Cobb-Douglas stochastic frontier production function. The results show that farm households had a mean TE of 83% with lower TE scores for the non-borrowers of agricultural microfinance. Addressing institutional policies regarding the consolidation of individual plots into farm units, ensuring access to microfinance, extension education for the farmers with longer farming experience are suggested to improve the TE of the farmers. In article II, the objective was to assess the effects of access to microfinance on household production and cost efficiency (CE) and to determine the efficiency differences between the microfinance participating and non-participating farms. In addition, a non-discretionary DEA model was applied to capture directly the influence of microfinance on farm households production and CE. The results suggested that under both pooled DEA models and non-discretionary DEA models, farmers with access to microfinance were significantly more efficient than their non-borrowing counterparts. Results also revealed that land fragmentation, family size, household wealth, on farm-training and off farm income share are the main determinants of inefficiency after effectively correcting for sample selection bias. In article III, the TE of traditional variety (TV) and high-yielding-variety (HYV) rice producers were estimated in addition to investigating the determinants of adoption rate of HYV rice. Furthermore, the role of TE as a potential determinant to explain the differences of adoption rate of HYV rice among the farmers was assessed. The results indicated that in spite of its much higher yield potential, HYV rice production was associated with lower TE and had a greater variability in yield. It was also found that TE had a significant positive influence on the adoption rates of HYV rice. In article IV, we estimated profit efficiency (PE) and profit-loss between microfinance borrowers and non-borrowers by a sample selection framework, which provided a general framework for testing and taking into account the sample selection in the stochastic (profit) frontier function analysis. After effectively correcting for selectivity bias, the mean PE of the microfinance borrowers and non-borrowers were estimated at 68% and 52% respectively. This suggested that a considerable share of profits were lost due to profit inefficiencies in rice production. The results also demonstrated that access to microfinance contributes significantly to increasing PE and reducing profit-loss per hectare land. In article V, the effects of credit constraints on TE, allocative efficiency (AE) and CE were assessed while adequately controlling for sample selection bias. The confidence intervals were determined by the bootstrap method for both samples. The results indicated that differences in average efficiency scores of credit constrained and unconstrained farms were not statistically significant although the average efficiencies tended to be higher in the group of unconstrained farms. After effectively correcting for selectivity bias, household experience, number of dependents, off-farm income, farm size, access to on farm training and yearly savings were found to be the main determinants of inefficiencies. In general, the results of the study revealed the existence substantial technical, allocative, economic inefficiencies and also considerable profit inefficiencies. The results of the study suggested the need to streamline agricultural microfinance by the microfinance institutions (MFIs), donor agencies and government at all tiers. Moreover, formulating policies that ensure greater access to agricultural microfinance to the smallholder farmers on a sustainable basis in the study areas to enhance productivity and efficiency has been recommended. Key Words: Technical, allocative, economic efficiency, DEA, Non-discretionary DEA, selection bias, bootstrapping, microfinance, Bangladesh.