4 resultados para countermovement jump
em Helda - Digital Repository of University of Helsinki
Resumo:
Frictions are factors that hinder trading of securities in financial markets. Typical frictions include limited market depth, transaction costs, lack of infinite divisibility of securities, and taxes. Conventional models used in mathematical finance often gloss over these issues, which affect almost all financial markets, by arguing that the impact of frictions is negligible and, consequently, the frictionless models are valid approximations. This dissertation consists of three research papers, which are related to the study of the validity of such approximations in two distinct modeling problems. Models of price dynamics that are based on diffusion processes, i.e., continuous strong Markov processes, are widely used in the frictionless scenario. The first paper establishes that diffusion models can indeed be understood as approximations of price dynamics in markets with frictions. This is achieved by introducing an agent-based model of a financial market where finitely many agents trade a financial security, the price of which evolves according to price impacts generated by trades. It is shown that, if the number of agents is large, then under certain assumptions the price process of security, which is a pure-jump process, can be approximated by a one-dimensional diffusion process. In a slightly extended model, in which agents may exhibit herd behavior, the approximating diffusion model turns out to be a stochastic volatility model. Finally, it is shown that when agents' tendency to herd is strong, logarithmic returns in the approximating stochastic volatility model are heavy-tailed. The remaining papers are related to no-arbitrage criteria and superhedging in continuous-time option pricing models under small-transaction-cost asymptotics. Guasoni, Rásonyi, and Schachermayer have recently shown that, in such a setting, any financial security admits no arbitrage opportunities and there exist no feasible superhedging strategies for European call and put options written on it, as long as its price process is continuous and has the so-called conditional full support (CFS) property. Motivated by this result, CFS is established for certain stochastic integrals and a subclass of Brownian semistationary processes in the two papers. As a consequence, a wide range of possibly non-Markovian local and stochastic volatility models have the CFS property.
Resumo:
The information that the economic agents have and regard relevant to their decision making is often assumed to be exogenous in economics. It is assumed that the agents either poses or can observe the payoff relevant information without having to exert any effort to acquire it. In this thesis we relax the assumption of ex-ante fixed information structure and study what happens to the equilibrium behavior when the agents must also decide what information to acquire and when to acquire it. This thesis addresses this question in the two essays on herding and two essays on auction theory. In the first two essays, that are joint work with Klaus Kultti, we study herding models where it is costly to acquire information on the actions that the preceding agents have taken. In our model the agents have to decide both the action that they take and additionally the information that they want to acquire by observing their predecessors. We characterize the equilibrium behavior when the decision to observe preceding agents' actions is endogenous and show how the equilibrium outcome may differ from the standard model, where all preceding agents actions are assumed to be observable. In the latter part of this thesis we study two dynamic auctions: the English and the Dutch auction. We consider a situation where bidder(s) are uninformed about their valuations for the object that is put up for sale and they may acquire this information for a small cost at any point during the auction. We study the case of independent private valuations. In the third essay of the thesis we characterize the equilibrium behavior in an English auction when there are informed and uninformed bidders. We show that the informed bidder may jump bid and signal to the uninformed that he has a high valuation, thus deterring the uninformed from acquiring information and staying in the auction. The uninformed optimally acquires information once the price has passed a particular threshold and the informed has not signalled that his valuation is high. In addition, we provide an example of an information structure where the informed bidder initially waits and then makes multiple jumps. In the fourth essay of this thesis we study the Dutch auction. We consider two cases where all bidders are all initially uninformed. In the first case the information acquisition cost is the same across all bidders and in the second also the cost of information acquisition is independently distributed and private information to the bidders. We characterize a mixed strategy equilibrium in the first and a pure strategy equilibrium in the second case. In addition we provide a conjecture of an equilibrium in an asymmetric situation where there is one informed and one uninformed bidder. We compare the revenues that the first price auction and the Dutch auction generate and we find that under some circumstances the Dutch auction outperforms the first price sealed bid auction. The usual first price sealed bid auction and the Dutch auction are strategically equivalent. However, this equivalence breaks down in case information is acquired during the auction.
Resumo:
Modeling and forecasting of implied volatility (IV) is important to both practitioners and academics, especially in trading, pricing, hedging, and risk management activities, all of which require an accurate volatility. However, it has become challenging since the 1987 stock market crash, as implied volatilities (IVs) recovered from stock index options present two patterns: volatility smirk(skew) and volatility term-structure, if the two are examined at the same time, presents a rich implied volatility surface (IVS). This implies that the assumptions behind the Black-Scholes (1973) model do not hold empirically, as asset prices are mostly influenced by many underlying risk factors. This thesis, consists of four essays, is modeling and forecasting implied volatility in the presence of options markets’ empirical regularities. The first essay is modeling the dynamics IVS, it extends the Dumas, Fleming and Whaley (DFW) (1998) framework; for instance, using moneyness in the implied forward price and OTM put-call options on the FTSE100 index, a nonlinear optimization is used to estimate different models and thereby produce rich, smooth IVSs. Here, the constant-volatility model fails to explain the variations in the rich IVS. Next, it is found that three factors can explain about 69-88% of the variance in the IVS. Of this, on average, 56% is explained by the level factor, 15% by the term-structure factor, and the additional 7% by the jump-fear factor. The second essay proposes a quantile regression model for modeling contemporaneous asymmetric return-volatility relationship, which is the generalization of Hibbert et al. (2008) model. The results show strong negative asymmetric return-volatility relationship at various quantiles of IV distributions, it is monotonically increasing when moving from the median quantile to the uppermost quantile (i.e., 95%); therefore, OLS underestimates this relationship at upper quantiles. Additionally, the asymmetric relationship is more pronounced with the smirk (skew) adjusted volatility index measure in comparison to the old volatility index measure. Nonetheless, the volatility indices are ranked in terms of asymmetric volatility as follows: VIX, VSTOXX, VDAX, and VXN. The third essay examines the information content of the new-VDAX volatility index to forecast daily Value-at-Risk (VaR) estimates and compares its VaR forecasts with the forecasts of the Filtered Historical Simulation and RiskMetrics. All daily VaR models are then backtested from 1992-2009 using unconditional, independence, conditional coverage, and quadratic-score tests. It is found that the VDAX subsumes almost all information required for the volatility of daily VaR forecasts for a portfolio of the DAX30 index; implied-VaR models outperform all other VaR models. The fourth essay models the risk factors driving the swaption IVs. It is found that three factors can explain 94-97% of the variation in each of the EUR, USD, and GBP swaption IVs. There are significant linkages across factors, and bi-directional causality is at work between the factors implied by EUR and USD swaption IVs. Furthermore, the factors implied by EUR and USD IVs respond to each others’ shocks; however, surprisingly, GBP does not affect them. Second, the string market model calibration results show it can efficiently reproduce (or forecast) the volatility surface for each of the swaptions markets.
Resumo:
The low predictive power of implied volatility in forecasting the subsequently realized volatility is a well-documented empirical puzzle. As suggested by e.g. Feinstein (1989), Jackwerth and Rubinstein (1996), and Bates (1997), we test whether unrealized expectations of jumps in volatility could explain this phenomenon. Our findings show that expectations of infrequently occurring jumps in volatility are indeed priced in implied volatility. This has two important consequences. First, implied volatility is actually expected to exceed realized volatility over long periods of time only to be greatly less than realized volatility during infrequently occurring periods of very high volatility. Second, the slope coefficient in the classic forecasting regression of realized volatility on implied volatility is very sensitive to the discrepancy between ex ante expected and ex post realized jump frequencies. If the in-sample frequency of positive volatility jumps is lower than ex ante assessed by the market, the classic regression test tends to reject the hypothesis of informational efficiency even if markets are informationally effective.