43 resultados para canopy gaps

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interaction between forests and the atmosphere occurs by radiative and turbulent transport. The fluxes of energy and mass between surface and the atmosphere directly influence the properties of the lower atmosphere and in longer time scales the global climate. Boreal forest ecosystems are central in the global climate system, and its responses to human activities, because they are significant sources and sinks of greenhouse gases and of aerosol particles. The aim of the present work was to improve our understanding on the existing interplay between biologically active canopy, microenvironment and turbulent flow and quantify. In specific, the aim was to quantify the contribution of different canopy layers to whole forest fluxes. For this purpose, long-term micrometeorological and ecological measurements made in a Scots pine (Pinus sylvestris) forest at SMEAR II research station in Southern Finland were used. The properties of turbulent flow are strongly modified by the interaction between the canopy elements: momentum is efficiently absorbed in the upper layers of the canopy, mean wind speed and turbulence intensities decrease rapidly towards the forest floor and power spectra is modulated by spectral short-cut . In the relative open forest, diabatic stability above the canopy explained much of the changes in velocity statistics within the canopy except in strongly stable stratification. Large eddies, ranging from tens to hundred meters in size, were responsible for the major fraction of turbulent transport between a forest and the atmosphere. Because of this, the eddy-covariance (EC) method proved to be successful for measuring energy and mass exchange inside a forest canopy with exception of strongly stable conditions. Vertical variations of within canopy microclimate, light attenuation in particular, affect strongly the assimilation and transpiration rates. According to model simulations, assimilation rate decreases with height more rapidly than stomatal conductance (gs) and transpiration and, consequently, the vertical source-sink distributions for carbon dioxide (CO2) and water vapor (H2O) diverge. Upscaling from a shoot scale to canopy scale was found to be sensitive to chosen stomatal control description. The upscaled canopy level CO2 fluxes can vary as much as 15 % and H2O fluxes 30 % even if the gs models are calibrated against same leaf-level dataset. A pine forest has distinct overstory and understory layers, which both contribute significantly to canopy scale fluxes. The forest floor vegetation and soil accounted between 18 and 25 % of evapotranspiration and between 10 and 20 % of sensible heat exchange. Forest floor was also an important deposition surface for aerosol particles; between 10 and 35 % of dry deposition of particles within size range 10 30 nm occurred there. Because of the northern latitudes, seasonal cycle of climatic factors strongly influence the surface fluxes. Besides the seasonal constraints, partitioning of available energy to sensible and latent heat depends, through stomatal control, on the physiological state of the vegetation. In spring, available energy is consumed mainly as sensible heat and latent heat flux peaked about two months later, in July August. On the other hand, annual evapotranspiration remains rather stable over range of environmental conditions and thus any increase of accumulated radiation affects primarily the sensible heat exchange. Finally, autumn temperature had strong effect on ecosystem respiration but its influence on photosynthetic CO2 uptake was restricted by low radiation levels. Therefore, the projected autumn warming in the coming decades will presumably reduce the positive effects of earlier spring recovery in terms of carbon uptake potential of boreal forests.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study examines both theoretically an empirically how well the theories of Norman Holland, David Bleich, Wolfgang Iser and Stanley Fish can explain readers' interpretations of literary texts. The theoretical analysis concentrates on their views on language from the point of view of Wittgenstein's Philosophical Investigations. This analysis shows that many of the assumptions related to language in these theories are problematic. The empirical data show that readers often form very similar interpretations. Thus the study challenges the common assumption that literary interpretations tend to be idiosyncratic. The empirical data consists of freely worded written answers to questions on three short stories. The interpretations were made by 27 Finnish university students. Some of the questions addressed issues that were discussed in large parts of the texts, some referred to issues that were mentioned only in passing or implied. The short stories were "The Witch à la Mode" by D. H. Lawrence, "Rain in the Heart" by Peter Taylor and "The Hitchhiking Game" by Milan Kundera. According to Fish, readers create both the formal features of a text and their interpretation of it according to an interpretive strategy. People who agree form an interpretive community. However, a typical answer usually contains ideas repeated by several readers as well as observations not mentioned by anyone else. Therefore it is very difficult to determine which readers belong to the same interpretive community. Moreover, readers with opposing opinions often seem to pay attention to the same textual features and even acknowledge the possibility of an opposing interpretation; therefore they do not seem to create the formal features of the text in different ways. Iser suggests that an interpretation emerges from the interaction between the text and the reader when the reader determines the implications of the text and in this way fills the "gaps" in the text. Iser believes that the text guides the reader, but as he also believes that meaning is on a level beyond words, he cannot explain how the text directs the reader. The similarity in the interpretations and the fact that the agreement is strongest when related to issues that are discussed broadly in the text do, however, support his assumption that readers are guided by the text. In Bleich's view, all interpretations have personal motives and each person has an idiosyncratic language system. The situation where a person learns a word determines the most important meaning it has for that person. In order to uncover the personal etymologies of words, Bleich asks his readers to associate freely on the basis of a text and note down all the personal memories and feelings that the reading experience evokes. Bleich's theory of the idiosyncratic language system seems to rely on a misconceived notion of the role that ostensive definitions have in language use. The readers' responses show that spontaneous associations to personal life seem to colour the readers' interpretations, but such instances are rather rare. According to Holland, an interpretation reflects the reader's identity theme. Language use is regulated by shared rules, but everyone follows the rules in his or her own way. Words mean different things to different people. The problem with this view is that if there is any basis for language use, it seems to be the shared way of following linguistic rules. Wittgenstein suggests that our understanding of words is related to the shared ways of using words and our understanding of human behaviour. This view seems to give better grounds for understanding similarity and differences in literary interpretations than the theories of Holland, Bleich, Fish and Iser.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The research is related to the Finnish Jabal Harun Project (FJHP), which is part of the research unit directed by Professor Jaakko Frösén. The project consists of two interrelated parts: the excavation of a Byzantine monastery/pilgrimage centre on Jabal Harun, and a multiperiod archaeological survey of the surrounding landscape. It is generally held that the Near Eastern landscape has been modified by millennia of human habitation and activity. Past climatic changes and human activities could be expected to have significantly changed also the landscape of the Jabal Harun area. Therefore it was considered that a study of erosion in the Jabal Harun area could shed light on the environmental and human history of the area. It was hoped that it would be possible to connect the results of the sedimentological studies either to wider climatic changes in the Near East, or to archaeologically observable periods of human activity and land use. As evidence of some archaeological periods is completely missing from the Jabal Harun area, it was also of interest whether catastrophic erosion or unfavourable environmental change, caused either by natural forces or by human agency, could explain the gaps in the archaeological record. Changes in climate and/or land-use were expected to be reflected in the sedimentary record. The field research, carried out as part of the FJHP survey fieldwork, included the mapping of wadi terraces and cleaning of sediment profiles which were recorded and sampled for laboratory analyses of facies and lithology. To obtain a chronology for the sedimentation and erosion phases also OSL (optically stimulated luminescence) dating samples were collected. The results were compared to the record of the Near Eastern palaeoclimate, and to data from geoarchaeological studies in central and southern Jordan. The picture of the environmental development was then compared to the human history in the area, based on archaeological evidence from the FJHP survey and the published archaeological research in the Petra region, and the question of the relationship between human activity and environmental change was critically discussed. Using the palaeoclimatic data and the results from geoarchaeological studies it was possible to outline the environmental development in the Jabal Harun area from the Pleistocene to the present.It is appears that there was a phase of accumulation of sediment before the Middle Palaeolithic period, possibly related to tectonic movement. This phase was later followed by erosion, tentatively suggested to have taken place during the Upper Palaeolithic. A period of wadi aggradation probably occurred during the Late Glacial and continued until the end of the Pleistocene, followed by significant channel degradation, attributed to increased rainfall during the Early Holocene. It seems that during the later Holocene channel incision has been dominant in the Jabal Harûn area although there have been also small-scale channel aggradation phases, two of which were OSL-dated to around 4000-3000 BP and 2400-2000 BP. As there is no evidence of tectonic movements in the Jabal Harun area after the early Pleistocene, it is suggested that climate change and human activity have been the major causes of environmental change in the area. At a brief glance it seems that many of the changes in the settlement and land use in the Jabal Harun area can be explained by climatic and environmental conditions. However, the responses of human societies to environmental change are dependent on many factors. Therefore an evaluation of the significance of environmental, cultural, socio-economic and political factors is needed to decide whether certain phenomena are environmentally induced. Comparison with the wider Petra region is also needed to judge whether the phenomena are characteristic of the Jabal Harun area only, or can they be connected to social, political and economic development over a wider area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study examines boundaries in health care organizations. Boundaries are sometimes considered things to be avoided in everyday living. This study suggests that boundaries can be important temporally and spatially emerging locations of development, learning, and change in inter-organizational activity. Boundaries can act as mediators of cultural and social formations and practices. The data of the study was gathered in an intervention project during the years 2000-2002 in Helsinki in which the care of 26 patients with multiple and chronic illnesses was improved. The project used the Change Laboratory method that represents a research assisted method for developing work. The research questions of the study are: (1) What are the boundary dynamics of development, learning, and change in health care for patients with multiple and chronic illnesses? (2) How do individual patients experience boundaries in their health care? (3) How are the boundaries of health care constructed and reconstructed in social interaction? (4) What are the dynamics of boundary crossing in the experimentation with the new tools and new practice? The methodology of the study, the ethnography of the multi-organizational field of activity, draws on cultural-historical activity theory and anthropological methods. The ethnographic fieldwork involves multiple research techniques and a collaborative strategy for raising research data. The data of this study consists of observations, interviews, transcribed intervention sessions, and patients' health documents. According to the findings, the care of patients with multiple and chronic illnesses emerges as fragmented by divisions of a patient and professionals, specialties of medicine and levels of health care organization. These boundaries have a historical origin in the Finnish health care system. As an implication of these boundaries, patients frequently experience uncertainty and neglect in their care. However, the boundaries of a single patient were transformed in the Change Laboratory discussions among patients, professionals and researchers. In these discussions, the questioning of the prevailing boundaries was triggered by the observation of gaps in inter-organizational care. Transformation of the prevailing boundaries was achieved in implementation of the collaborative care agreement tool and the practice of negotiated care. However, the new tool and practice did not expand into general use during the project. The study identifies two complementary models for the development of health care organization in Finland. The 'care package model', which is based on productivity and process models adopted from engineering and the 'model of negotiated care', which is based on co-configuration and the public good.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The research examines the process by which a sense of belonging to Finnish society is constructed among women of Russian and Estonian background who are multiply marginalised in Finnish society. It does so by analysing the encounters between their nationality and 'being Finnis'. Attention is focused on the question of what kind of "journey" they take after moving to Finland, how a sense of belonging is constructed especially along the paths followed in education and at work, and what kind of agency is available to them. The thesis is connected with post-colonial research and also draws from studies on citizenship and nationality as well as the social structures of interaction, when analysing careers. As the educational system forms the most central context of the research, the work is also focused on educational sociology. The research methodology includes life history and a narrative approach. The raw data is from thematic interviews concerning the life experiences of women of immigrant backgrounds. They were studying in Finland to be practical nurses or to complete Bachelor of Social Service degree. According to the study, the women had been encountered as alien, strange, and carrying a shade of "otherness". The experience of inclusion in Finnish communities and society turned out to be conditional, an inclusion based on the notion of a citizen worker, which is defined by national needs. The person from abroad is placed in the position of someone who fills gaps in the services of the welfare state. The choice of education in the care sector and the overall necessity of obtaining Finnish education turned out to be socially directed. Gendered structures of education and working life were found to act as a frame in which the decisions of the immigrant women were made. Although national education policy emphasis as an orientation to global labour markets, the immigrant student is placed above all in the position of an object to be made suitable for the Finnish labour market. Citizenship, a goal of education, requires consent to being "socialised" into Finnish society as well as learning to be Finnish. One s only option to negotiate appearing suitable as a member is to construct oneself into someone who adopts Finnish and Western cultural values, values which favour individuality. However, Finnish education is a resource to Finnishness. Finnish education enables a sense of being Finnish, and empowers the job applicant for example, and in addition to providing cultural, human and social capital strengthen inclusion as well. The study confirms the view that the encounter of an immigrant is still characterised by its colonial nature. It shows that encounters with Finns and Finnish society place the person of immigrant background, even one receiving a Finnish education, in the position of "the other". The journey as an immigrant continues. The immigrant has access only to certain predefined subject positions, which limits agency. When categorised as an immigrant, one becomes a per-son who is different and "other", while the sense of belonging as a member of Finnish society without conditions appears to be somewhat unreachable. Yet, new arrivals are capable of acting change. An immigrant woman can challenge the positions offered to her and present herself as strong. Her life story has often included struggle, and she has the fortitude strength to change her circumstances. Key words: life story, post-colonial encounter, nationality, citizenship, the career of immi-grant, position, agency

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An important challenge in forest industry is to get the appropriate raw material out from the forests to the wood processing industry. Growth and stem reconstruction simulators are therefore increasingly integrated in industrial conversion simulators, for linking the properties of wooden products to the three-dimensional structure of stems and their growing conditions. Static simulators predict the wood properties from stem dimensions at the end of a growth simulation period, whereas in dynamic approaches, the structural components, e.g. branches, are incremented along with the growth processes. The dynamic approach can be applied to stem reconstruction by predicting the three-dimensional stem structure from external tree variables (i.e. age, height) as a result of growth to the current state. In this study, a dynamic growth simulator, PipeQual, and a stem reconstruction simulator, RetroSTEM, are adapted to Norway spruce (Picea abies [L.] Karst.) to predict the three-dimensional structure of stems (tapers, branchiness, wood basic density) over time such that both simulators can be integrated in a sawing simulator. The parameterisation of the PipeQual and RetroSTEM simulators for Norway spruce relied on the theoretically based description of tree structure developing in the growth process and following certain conservative structural regularities while allowing for plasticity in the crown development. The crown expressed both regularity and plasticity in its development, as the vertical foliage density peaked regularly at about 5 m from the stem apex, varying below that with tree age and dominance position (Study I). Conservative stem structure was characterized in terms of (1) the pipe ratios between foliage mass and branch and stem cross-sectional areas at crown base, (2) the allometric relationship between foliage mass and crown length, (3) mean branch length relative to crown length and (4) form coefficients in branches and stem (Study II). The pipe ratio between branch and stem cross-sectional area at crown base, and mean branch length relative to the crown length may differ in trees before and after canopy closure, but the variation should be further analysed in stands of different ages and densities with varying site fertilities and climates. The predictions of the PipeQual and RetroSTEM simulators were evaluated by comparing the simulated values to measured ones (Study III, IV). Both simulators predicted stem taper and branch diameter at the individual tree level with a small bias. RetroSTEM predictions of wood density were accurate. For focusing on even more accurate predictions of stem diameters and branchiness along the stem, both simulators should be further improved by revising the following aspects in the simulators: the relationship between foliage and stem sapwood area in the upper stem, the error source in branch sizes, the crown base development and the height growth models in RetroSTEM. In Study V, the RetroSTEM simulator was integrated in the InnoSIM sawing simulator, and according to the pilot simulations, this turned out to be an efficient tool for readily producing stand scale information about stem sizes and structure when approximating the available assortments of wood products.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ozone (O3) is a reactive gas present in the troposphere in the range of parts per billion (ppb), i.e. molecules of O3 in 109 molecules of air. Its strong oxidative capacity makes it a key element in tropospheric chemistry and a threat to the integrity of materials, including living organisms. Knowledge and control of O3 levels are an issue in relation to indoor air quality, building material endurance, respiratory human disorders, and plant performance. Ozone is also a greenhouse gas and its abundance is relevant to global warming. The interaction of the lower troposphere with vegetated landscapes results in O3 being removed from the atmosphere by reactions that lead to the oxidation of plant-related components. Details on the rate and pattern of removal on different landscapes as well as the ultimate mechanisms by which this occurs are not fully resolved. This thesis analysed the controlling processes of the transfer of ozone at the air-plant interface. Improvement in the knowledge of these processes benefits the prediction of both atmospheric removal of O3 and its impact on vegetation. This study was based on the measurement and analysis of multi-year field measurements of O3 flux to Scots pine (Pinus sylvestris L.) foliage with a shoot-scale gas-exchange enclosure system. In addition, the analyses made use of simultaneous CO2 and H2O exchange, canopy-scale O3, CO2 and H2O exchange, foliage surface wetness, and environmental variables. All data was gathered at the SMEAR measuring station (southern Finland). Enclosure gas-exchange techniques such as those commonly used for the measure of CO2 and water vapour can be applied to the measure of ozone gas-exchange in the field. Through analysis of the system dynamics the occurring disturbances and noise can be identified. In the system used in this study, the possible artefacts arising from the ozone reactivity towards the system materials in combination with low background concentrations need to be taken into account. The main artefact was the loss of ozone towards the chamber walls, which was found to be very variable. The level of wall-loss was obtained from simultaneous and continuous measurements, and was included in the formulation of the mass balance of O3 concentration inside the chamber. The analysis of the field measurements in this study show that the flux of ozone to the Scots pine foliage is generated in about equal proportions by stomatal and non-stomatal controlled processes. Deposition towards foliage and forest is sustained also during night and winter when stomatal gas-exchange is low or absent. The non-stomatal portion of the flux was analysed further. The pattern of flux in time was found to be an overlap of the patterns of biological activity and presence of wetness in the environment. This was seen to occur both at the shoot and canopy scale. The presence of wetness enhanced the flux not only in the presence of liquid droplets but also during existence of a moisture film on the plant surfaces. The existence of these films and their relation to the ozone sinks was determined by simultaneous measurements of leaf surface wetness and ozone flux. The results seem to suggest ozone would be reacting at the foliage surface and the reaction rate would be mediated by the presence of surface wetness. Alternative mechanisms were discussed, including nocturnal stomatal aperture and emission of reactive volatile compounds. The prediction of the total flux could thus be based on a combination of a model of stomatal behaviour and a model of water absorption on the foliage surfaces. The concepts behind the division of stomatal and non-stomatal sinks were reconsidered. This study showed that it is theoretically possible that a sink located before or near the stomatal aperture prevents or diminishes the diffusion of ozone towards the intercellular air space of the mesophyll. This obstacle to stomatal diffusion happens only under certain conditions, which include a very low presence of reaction sites in the mesophyll, an extremely strong sink located on the outer surfaces or stomatal pore. The relevance, or existence, of this process in natural conditions would need to be assessed further. Potentially strong reactions were considered, including dissolved sulphate, volatile organic compounds, and apoplastic ascorbic acid. Information on the location and the relative abundance of these compounds would be valuable. The highest total flux towards the foliage and forest happens when both the plant activity and ambient moisture are high. The highest uptake into the interior of the foliage happens at large stomatal apertures, provided that scavenging reactions located near the stomatal pore are weak or non-existent. The discussion covers the methodological developments of this study, the relevance of the different controlling factors of ozone flux, the partition amongst its component, and the possible mechanisms of non-stomatal uptake.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objectives of this study were to analyze the impact of structural stand characteristics on ignition potential, surface fuel moisture, and fire behavior in Pinus sylvestris L. and Picea abies (L.) Karst stands in Finland and to explain stand-specific fire danger using the Canadian Fire Weather Index System and the Finnish Fire Risk Index. Additionally, the study analyzes the relationship between observed fire activity and fire weather indices at different stages of growing season. Field experiments were carried out in Pinus sylvestris or Picea abies dominated stands during fire seasons 2001 and 2002. Observations on ignition potential, fuel moisture, and fire behavior were analyzed in relation to stand structure and the outputs of the Finnish and Canadian fire weather indices. Seasonal patterns of fire activity were examined based on national fire statistics 1996 2003, effective temperature sum, and the fire weather indices. Point fire ignition potential was highest in Pinus clear-cuts and lowest in closed Picea stands. Moss-dominated surface fuels were driest in clear-cut and sapling stage stands and presented the highest moisture content under closed Picea canopy. Pinus sylvestris stands carried fire under a wide range of fire weather conditions under which Picea abies stands failed to sustain fire. In the national fire records, the daily number of reported ignitions presented its highest value during late fire season whereas the daily area burned peaked most substantially during early season. The fire weather indices correlated significantly with ignition potential and fuel moisture but were unable to explain fire behavior in the experimental fires. During the initial and final stages of the growing season, fire activity was disconnected from weather-based fire danger ratings. Information on stand structure and season stage would benefit the assessment of fire danger in Finnish forest landscape for fire suppression and controlled burning purposes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Establishment of Pinus kesiya Roy. ex Gord. plantations in Thailand began in the 1960s by the Royal Forest Department. The aim was to reforest abandoned swidden areas and grasslands in order to reduce erosion and to produce timber and fuel wood. Today there are about 150, 000 ha of P. kesiya plantations in northern Thailand. Most of these plantations cannot be harvested due to a national logging ban. Previous studies have suggested that Pinus kesiya plantations posses a capability as a foster environment for native broadleaved tree species, but little is known about the extent of regeneration in these plantations. The general aim of the study was to clarify the extent of forest regeneration and interactions behind it in Pinus kesiya plantations of the Ping River basin, northern Thailand. Based on the results of this study and previous literature, forest management proposals were produced for the area studied. In four different pine plantation areas, a total of seven plantations were assessed using systematic data collection with clustered circular sample plots. Vegetation and environmental data were statistically analysed, so as to recognise the key factors affecting regeneration. Regeneration had occurred in all plantations studied. Regeneration of broadleaved trees was negatively affected by forest fire and canopy coverage. A high basal area of mature broadleaved trees affected the regeneration process positively. Forest fire disturbance had a strong effect also on plantation structure and species composition. Because of an unclear future forest management setting as regards forest laws in Thailand, a management system that enables various future utilisation possibilities and emphasises local participation is recommended for P. kesiya watershed platations of northern Thailand.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structure and function of northern ecosystems are strongly influenced by climate change and variability and by human-induced disturbances. The projected global change is likely to have a pronounced effect on the distribution and productivity of different species, generating large changes in the equilibrium at the tree-line. In turn, movement of the tree-line and the redistribution of species produce feedback to both the local and the regional climate. This research was initiated with the objective of examining the influence of natural conditions on the small-scale spatial variation of climate in Finnish Lapland, and to study the interaction and feedback mechanisms in the climate-disturbances-vegetation system near the climatological border of boreal forest. The high (1 km) resolution spatial variation of climate parameters over northern Finland was determined by applying the Kriging interpolation method that takes into account the effect of external forcing variables, i.e., geographical coordinates, elevation, sea and lake coverage. Of all the natural factors shaping the climate, the geographical position, local topography and altitude proved to be the determining ones. Spatial analyses of temperature- and precipitation-derived parameters based on a 30-year dataset (1971-2000) provide a detailed description of the local climate. Maps of the mean, maximum and minimum temperatures, the frost-free period and the growing season indicate that the most favourable thermal conditions exist in the south-western part of Lapland, around large water bodies and in the Kemijoki basin, while the coldest regions are in highland and fell Lapland. The distribution of precipitation is predominantly longitudinally dependent but with the definite influence of local features. The impact of human-induced disturbances, i.e., forest fires, on local climate and its implication for forest recovery near the northern timberline was evaluated in the Tuntsa area of eastern Lapland, damaged by a widespread forest fire in 1960 and suffering repeatedly-failed vegetation recovery since that. Direct measurements of the local climate and simulated heat and water fluxes indicated the development of a more severe climate and physical conditions on the fire-disturbed site. Removal of the original, predominantly Norway spruce and downy birch vegetation and its substitution by tundra vegetation has generated increased wind velocity and reduced snow accumulation, associated with a large variation in soil temperature and moisture and deep soil frost. The changed structural parameters of the canopy have determined changes in energy fluxes by reducing the latter over the tundra vegetation. The altered surface and soil conditions, as well as the evolved severe local climate, have negatively affected seedling growth and survival, leading to more unfavourable conditions for the reproduction of boreal vegetation and thereby causing deviations in the regional position of the timberline. However it should be noted that other factors, such as an inadequate seed source or seedbed, the poor quality of the soil and the intensive logging of damaged trees could also exacerbate the poor tree regeneration. In spite of the failed forest recovery at Tunsta, the position and composition of the timberline and tree-line in Finnish Lapland may also benefit from present and future changes in climate. The already-observed and the projected increase in temperature, the prolonged growing season, as well as changes in the precipitation regime foster tree growth and new regeneration, resulting in an advance of the timberline and tree-line northward and upward. This shift in the distribution of vegetation might be decelerated or even halted by local topoclimatic conditions and by the expected increase in the frequency of disturbances.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Being at the crossroads of the Old World continents, Western Asia has a unique position through which the dispersal and migration of mammals and the interaction of faunal bioprovinces occurred. Despite its critical position, the record of Miocene mammals in Western Asia is sporadic and there are large spatial and temporal gaps between the known fossil localities. Although the development of the mammalian faunas in the Miocene of the Old World is well known and there is ample evidence for environmental shifts in this epoch, efforts toward quantification of habitat changes and development of chronofaunas based on faunal compositions were mostly neglected. Advancement of chronological, paleoclimatological, and paleogeographical reconstruction tools and techniques and increased numbers of new discoveries in recent decades have brought the need for updating and modification of our level of understanding. We under took fieldwork and systematic study of mammalian trace and body fossils from the northwestern parts of Iran along with analysis of large mammal data from the NOW database. The data analysis was used to study the provinciality, relative abundance, and distribution history of the closed- and open-adapted taxa and chronofaunas in the Miocene of the Old World and Western Asia. The provinciality analysis was carried out, using locality clustering, and the relative abundance of the closed- and open-adapted taxa was surveyed at the family level. The distribution history of the chronofaunas was studied, using faunal resemblance indices and new mapping techniques, together with humidity analysis based on mean ordinated hypsodonty. Paleoichnological studies revealed the abundance of mammalian footprints in several parts of the basins studied, which are normally not fossiliferous in terms of body fossils. The systematic study and biochronology of the newly discovered mammalian fossils in northwestern Iran indicates their close affinities with middle Turolian faunas. Large cranial remains of hipparionine horses, previously unknown in Iran and Western Asia, are among the material studied. The initiation of a new field project in the famous Maragheh locality also brings new opportunities to address questions regarding the chronology and paleoenvironment of this classical site. Provinciality analysis modified our previous level of understandings, indicating the interaction of four provinces in Western Asia. The development of these provinces was apparently due to the presence of high mountain ranges in the area, which affected the dispersal of mammals and also climatic patterns. Higher temperatures and possibly higher co2 levels in the Middle Miocene Climatic Optimum apparently favored the development of the closed forested environments that supported the dominance of the closed-adapted taxa. The increased seasonality and the progressive cooling and drying of the midlatitudes toward the Late Miocene maintained the dominance of open-adapted faunas. It appears that the late Middle Miocene was the time of transition from a more forested to a less forested world. The distribution history of the closed- and open-adapted chronofaunas shows the presence of cosmopolitan and endemic faunas in Western Asia. The closed-adapted faunas, such as the Arabian chronofauna of the late Early‒early Middle Miocene, demonstrated a rapid buildup and gradual decline. The open-adapted chronofaunas, such as the Late Miocene Maraghean fauna, climaxed gradually by filling the opening environments and moving in response to changes in humidity patterns. They abruptly declined due to demise of their favored environments. The Siwalikan chronofauna of the early Late Miocene remained endemic and restricted through all its history. This study highlights the importance of field investigations and indicates that new surveys in the vast areas of Western Asia, which are poorly sampled in terms of fossil mammal localities, can still be promising. Clustering of the localities supports the consistency of formerly known patterns and augments them. Although the quantitative approach to relative abundance history of the closed- and open-adapted mammals harks back to more than half a century ago, it is a novel technique providing robust results. Tracking the history of the chronofaunas in space and time by means of new computational and illustration methods is also a new practice that can be expanded to new areas and time spans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The importance of supercontinents in our understanding of the geological evolution of the planet Earth has been recently emphasized. The role of paleomagnetism in reconstructing lithospheric blocks in their ancient paleopositions is vital. Paleomagnetism is the only quantitative tool for providing ancient latitudes and azimuthal orientations of continents. It also yields information of content of the geomagnetic field in the past. In order to obtain a continuous record on the positions of continents, dated intrusive rocks are required in temporal progression. This is not always possible due to pulse-like occurrences of dykes. In this work we demonstrate that studies of meteorite impact-related rocks may fill some gaps in the paleomagnetic record. This dissertation is based on paleomagnetic and rock magnetic data obtained from samples of the Jänisjärvi impact structure (Russian Karelia, most recent 40Ar-39Ar age of 682 Ma), the Salla diabase dyke (North Finland, U-Pb 1122 Ma), the Valaam monzodioritic sill (Russian Karelia, U-Pb 1458 Ma), and the Vredefort impact structure (South Africa, 2023 Ma). The paleomagnetic study of Jänisjärvi samples was made in order to obtain a pole for Baltica, which lacks paleomagnetic data from 750 to ca. 600 Ma. The position of Baltica at ca. 700 Ma is relevant in order to verify whether the supercontinent Rodinia was already fragmented. The paleomagnetic study of the Salla dyke was conducted to examine the position of Baltica at the onset of supercontinent Rodinia's formation. The virtual geomagnetic pole (VGP) from Salla dyke provides hints that the Mesoproterozoic Baltica - Laurentia unity in the Hudsonland (Columbia, Nuna) supercontinent assembly may have lasted until 1.12 Ga. Moreover, the new VGP of Salla dyke provides new constraint on the timing of the rotation of Baltica relative to Laurentia (e.g. Gower et al., 1990). A paleomagnetic study of the Valaam sill was carried out in order to shed light into the question of existence of Baltica-Laurentia unity in the supercontinent Hudsonland. Combined with results from dyke complex of the Lake Ladoga region (Schehrbakova et al., 2008) a new robust paleomagnetic pole for Baltica is obtained. This pole places Baltica on a latitude of 10°. This low latitude location is supported also by Mesoproterozoic 1.5 1.3 Ga red-bed sedimentation (for example the Satakunta sandstone). The Vredefort impactite samples provide a well dated (2.02 Ga) pole for the Kaapvaal Craton. Rock magnetic data reveal unusually high Koenigsberger ratios (Q values) in all studied lithologies of the Vredefort dome. The high Q values are now first time also seen in samples from the Johannesburg Dome (ca. 120 km away) where there is no impact evidence. Thus, a direct causative link of high Q values to the Vredefort impact event can be ruled out.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work develops methods to account for shoot structure in models of coniferous canopy radiative transfer. Shoot structure, as it varies along the light gradient inside canopy, affects the efficiency of light interception per unit needle area, foliage biomass, or foliage nitrogen. The clumping of needles in the shoot volume also causes a notable amount of multiple scattering of light within coniferous shoots. The effect of shoot structure on light interception is treated in the context of canopy level photosynthesis and resource use models, and the phenomenon of within-shoot multiple scattering in the context of physical canopy reflectance models for remote sensing purposes. Light interception. A method for estimating the amount of PAR (Photosynthetically Active Radiation) intercepted by a conifer shoot is presented. The method combines modelling of the directional distribution of radiation above canopy, fish-eye photographs taken at shoot locations to measure canopy gap fraction, and geometrical measurements of shoot orientation and structure. Data on light availability, shoot and needle structure and nitrogen content has been collected from canopies of Pacific silver fir (Abies amabilis (Dougl.) Forbes) and Norway spruce (Picea abies (L.) Karst.). Shoot structure acclimated to light gradient inside canopy so that more shaded shoots have better light interception efficiency. Light interception efficiency of shoots varied about two-fold per needle area, about four-fold per needle dry mass, and about five-fold per nitrogen content. Comparison of fertilized and control stands of Norway spruce indicated that light interception efficiency is not greatly affected by fertilization. Light scattering. Structure of coniferous shoots gives rise to multiple scattering of light between the needles of the shoot. Using geometric models of shoots, multiple scattering was studied by photon tracing simulations. Based on simulation results, the dependence of the scattering coefficient of shoot from the scattering coefficient of needles is shown to follow a simple one-parameter model. The single parameter, termed the recollision probability, describes the level of clumping of the needles in the shoot, is wavelength independent, and can be connected to previously used clumping indices. By using the recollision probability to correct for the within-shoot multiple scattering, canopy radiative transfer models which have used leaves as basic elements can use shoots as basic elements, and thus be applied for coniferous forests. Preliminary testing of this approach seems to explain, at least partially, why coniferous forests appear darker than broadleaved forests in satellite data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis which consists of an introduction and four peer-reviewed original publications studies the problems of haplotype inference (haplotyping) and local alignment significance. The problems studied here belong to the broad area of bioinformatics and computational biology. The presented solutions are computationally fast and accurate, which makes them practical in high-throughput sequence data analysis. Haplotype inference is a computational problem where the goal is to estimate haplotypes from a sample of genotypes as accurately as possible. This problem is important as the direct measurement of haplotypes is difficult, whereas the genotypes are easier to quantify. Haplotypes are the key-players when studying for example the genetic causes of diseases. In this thesis, three methods are presented for the haplotype inference problem referred to as HaploParser, HIT, and BACH. HaploParser is based on a combinatorial mosaic model and hierarchical parsing that together mimic recombinations and point-mutations in a biologically plausible way. In this mosaic model, the current population is assumed to be evolved from a small founder population. Thus, the haplotypes of the current population are recombinations of the (implicit) founder haplotypes with some point--mutations. HIT (Haplotype Inference Technique) uses a hidden Markov model for haplotypes and efficient algorithms are presented to learn this model from genotype data. The model structure of HIT is analogous to the mosaic model of HaploParser with founder haplotypes. Therefore, it can be seen as a probabilistic model of recombinations and point-mutations. BACH (Bayesian Context-based Haplotyping) utilizes a context tree weighting algorithm to efficiently sum over all variable-length Markov chains to evaluate the posterior probability of a haplotype configuration. Algorithms are presented that find haplotype configurations with high posterior probability. BACH is the most accurate method presented in this thesis and has comparable performance to the best available software for haplotype inference. Local alignment significance is a computational problem where one is interested in whether the local similarities in two sequences are due to the fact that the sequences are related or just by chance. Similarity of sequences is measured by their best local alignment score and from that, a p-value is computed. This p-value is the probability of picking two sequences from the null model that have as good or better best local alignment score. Local alignment significance is used routinely for example in homology searches. In this thesis, a general framework is sketched that allows one to compute a tight upper bound for the p-value of a local pairwise alignment score. Unlike the previous methods, the presented framework is not affeced by so-called edge-effects and can handle gaps (deletions and insertions) without troublesome sampling and curve fitting.