51 resultados para bacterial membrane

em Helda - Digital Repository of University of Helsinki


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Viruses are biological entities able to replicate only within their host cells. Accordingly, entry into the host is a crucial step of the virus life-cycle. The focus of this study was the entry of bacterial membrane-containing viruses into their host cells. In order to reach the site of replication, the cytoplasm of the host, bacterial viruses have to traverse the host cell envelope, which consists of several distinct layers. Lipid membrane is a common feature among animal viruses but not so frequently observed in bacteriophages. There are three families of icosahedral bacteriophages that contain lipid membranes. These viruses belong to families Cystoviridae, Tectiviridae, and Corticoviridae. During the course of this study the entry mechanisms of phages representing the three viral families were investigated. We employed a range of microbiological, biochemical, molecular biology and microscopy techniques that allowed us to dissect phage entry into discrete steps: receptor binding, penetration through the outer membrane, crossing the peptidoglycan layer and interaction with the cytoplasmic membrane. We determined that bacteriophages belonging to the Cystoviridae, Tectiviridae, and Corticoviridae viral families use completely different strategies to penetrate into their host cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Species of the genera Rhodococcus, Gordonia and Mycobacterium are known as degraders of recalcitrant pollutants. These bacteria are good survivors in harsh environments. Due to such properties these organisms are able to occupy a wide range of environmental niches. The members of these taxa have been suggested as tools for biotechnical applications such as bioremediation and biosynthesis. At the same time several of the species are known as opportunistic human pathogens. Therefore, the detailed characterization of any isolate that has potential for biotechnological applications is very important. This thesis deals with several corynebacterial strains originating from different polluted environments: soil, water-damaged indoor walls, and drinking water distribution systems. A polyphasic taxonomic approach was applied for characterization of the isolates. We found that the strains degrading monoaromatic compounds belonged to Rhodococcus opacus, a species that has not been associated with any health problem. The taxonomic position of strain B293, used for many years in degradation research under different names, was clarified. We assigned it to the species Gordonia polyisoprenivorans. This species is classified under European Biohazard grouping 1, meaning that it is not considered a health hazard for humans. However, there are reports of catheter-associated bacteraemia caused by G. polyisoprenivorans. Our results suggested that the ability of the organism to grow on phthalate esters, used as softeners in medical plastics, may be associated with the colonization of catheters and other devices. In this thesis Mycobacterium lentiflavum, a new emerging opportunistic human pathogen, was isolated from biofilms growing in public drinking water distribution systems. Our report on isolation of M. lentiflavum from water supplies is the second report on this species from drinking water systems, which may thus constitute a reservoir of M. lentiflavum. Automated riboprinting was evaluated for its applicability in rapidly identifying environmental mycobacteria. The technique was found useful in the characterization of several species of rapidly and slowly growing environmental mycobacteria. The second aspect of this thesis refers to characterization of the degradation and tolerance power of several R. opacus, M. murale and G. polyisoprenivorans strains. R. opacus GM-14 utilizes a wide range of aromatic substrates, including benzene, 15 different halobenzenes, 18 phenols and 7 benzoates. This study revealed the high tolerance of R. opacus strains toward toxic hydrophobic compounds. R. opacus GM-14 grew in mineral medium to which benzene or monochlorobenzene was added in amounts of 13 or 3 g l-1, respectively. R. opacus GM-29 utilized toluene and benzene for growth. Strain GM-29 grew in mineral medium with 7 g l-1 of liquid toluene or benzene as the sole carbon source, corresponding to aqueous concentrations of 470 and 650 mg l-1, respectively. Most organic solvents, such as toluene and benzene, due to their high level of hydrophobicity, pass through the bacterial membrane, causing its disintegration. In this thesis the mechanisms of adaptation of rhodococci to toxic hydrophobic compounds were investigated. The rhodococcal strains increased the level of saturation of their cellular fatty acids in response to challenge with phenol, chlorophenol, benzene, chlorobenzene or toluene. The results indicated that increase in the saturation level of cellular fatty acids, particularly that in tuberculostearic acid, is part of the adaptation mechanism of strains GM-14 and GM-29 to the presence of toxic hydrophobic compounds.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The complexity of life is based on an effective energy transduction machinery, which has evolved during the last 3.5 billion years. In aerobic life, the utilization of the high oxidizing potential of molecular oxygen powers this machinery. Oxygen is safely reduced by a membrane bound enzyme, cytochrome c oxidase (CcO), to produce an electrochemical proton gradient over the mitochondrial or bacterial membrane. This gradient is used for energy-requiring reactions such as synthesis of ATP by F0F1-ATPase and active transport. In this thesis, the molecular mechanism by which CcO couples the oxygen reduction chemistry to proton-pumping has been studied by theoretical computer simulations. By building both classical and quantum mechanical model systems based on the X-ray structure of CcO from Bos taurus, the dynamics and energetics of the system were studied in different intermediate states of the enzyme. As a result of this work, a mechanism was suggested by which CcO can prevent protons from leaking backwards in proton-pumping. The use and activation of two proton conducting channels were also enlightened together with a mechanism by which CcO sorts the chemical protons from pumped protons. The latter problem is referred to as the gating mechanism of CcO, and has remained a challenge in the bioenergetics field for more than three decades. Furthermore, a new method for deriving charge parameters for classical simulations of complex metalloenzymes was developed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Gram-negative bacteria are harmful in various surroundings. In the food industy their metabolites are potential cause of spoilage and this group also includes many severe or potential pathogens, such as Salmonella. Due to their ability to produce biofilms Gram-negative bacteria also cause problems in many industrial processes as well as in clinical surroundings. Control of Gram-negative bacteria is hampered by the outer membrane (OM) in the outermost layer of the cells. This layer is an intrinsic barrier for many hydrophobic agents and macromolecules. Permeabilizers are compounds that weaken OM and can thus increase the activity of antimicrobials by facililating entry of hydrophobic compounds and macromolecules into the cell where they can reach their target sites and inhibit or destroy cellular functions. The work described in this thesis shows that lactic acid acts as a permeabilizer and destabilizes the OM of Gram-negative bacteria. In addition, organic acids present in berriers, i.e. malic, sorbic and benzoic acid, were shown to weaken the OM of Gram-negative bacteria. Organic acids can poteniate the antimicrobial activity of other compounds. Microbial colonic degradation products of plant-derived phenolic compounds (3,4-dihydroxyphenylacetic acid, 3-hydroxyphenylacetic acid, 3,4-dihydroxyphenylpropionic acid, 4-hydroxyphenylpropionic acid, 3-phenylpropionic acid and 3-hydroxyphenylpropionic acid) efficiently destabilized OM of Salmonella. The studies increase our understanding of the mechanism of action of the classical chelator, ethylenediaminetetra-acetic acid (EDTA). In addition, the results indicate that the biocidic activity of benzalkonium chloride against Pseudomonas can be increased by combined use with polyethylenimine (PEI). In addition to PEI, several other potential permeabilizers, such as succimer, were shown to destabilize the OM of Gram-negative bacteria. Furthermore, combination of the results obtained from various permeability assays (e.g. uptake of a hydrophobic probe, sensitization to hydrophobic antibiotics and detergents, release of lipopolysaccharide (LPS) and LPS-specific fatty acids) with atomic force microscopy (AFM) image results increases our knowledge of the action of permeabilizers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this thesis project is to study changes in the physical state of cell membranes during cell entry, including how these changes are connected to the presence of ceramide. The role of enzymatical manipulation of lipids in bacterial internalization is also studied. A novel technique, where a single giant vesicle is chosen under the microscope and an enzyme coupled-particle attached to the micromanipulator pipette towards the vesicle, is used. Thus, the enzymatic reaction on the membrane of the giant vesicle can be followed in real-time. The first aim of this study is to develop a system where the localized sphingomyelinase membrane interaction could be observed on the surface of the giant vesicle and the effects could be monitored with microscopy. Domain formation, which resembles acid sphingomyelinase (ASMase), causes CD95 clustering in the cell membrane due to ceramide production (Grassmé et al., 2001a; Grassmé et al., 2001b) and the formation of small vesicles inside the manipulated giant vesicle is observed. Sphingomyelinase activation has also been found to be an important factor in the bacterial and viral invasion process in nonphagocytic cells (Grassmé et al., 1997; Jan et al., 2000). Accordingly, sphingomyelinase reactions in the cell membrane might also give insight into bacterial or viral cellular entry events. We found sphingomyelinase activity in Chlamydia pneumonia elementarybodies (EBs). Interestingly, the bacterium enters host cells by endocytosis but the internalization mechanism of Chlamydia is unknown. The hypothesis is that sphingomyelin is needed for host cell entry in the infection of C. pneumonia. The second project focuses on this subject. The goal of the third project is to study a role of phosphatidylserine as a target for a membrane binding protein. Phosphatidylserine is chosen because of its importance in fusion processes. This will be another example for the importance of lipids in cell targeting, internalization, and externalization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proteolysis is important in bacterial pathogenesis and colonization of animal and plant hosts. In this work I have investigated the functions of the bacterial outer membrane proteases, omptins, of Yersinia pestis and Salmonella enterica. Y. pestis is a zoonotic pathogen that causes plague and has evolved from gastroenteritis-causing Yersinia pseudotuberculosis about 13 000 years ago. S. enterica causes gastroenteritis and typhoid fever in humans. Omptins are transmembrane β-barrels with ten antiparallel β-strands and five surface-exposed loops. The loops are important in substrate recognition, and variation in the loop sequences leads to different substrate selectivities between omptins, which makes omptins an ideal platform to investigate functional adaptation and to alter their polypeptide substrate preferences. The omptins Pla of Y. pestis and PgtE of S. enterica are 75% identical in their amino acid sequences. Pla is a multifunctional protein with proteolytic and non-proteolytic functions, and it increases bacterial penetration and proliferation in the host. Functions of PgtE increase migration of S. enterica in vivo and bacterial survival in mouse macrophages, thus enhancing bacterial spread within the host. Mammalian plasminogen/fibrinolytic system maintains the balance between coagulation and fibrinolysis and participates in several cellular processes, e.g., cell migration and degradation of extracellular matrix proteins. This system consists of activation cascades, which are strictly controlled by several regulators, such as plasminogen activator inhibitor 1 (PAI-1), α2-antiplasmin (α2AP), and thrombin-activatable fibrinolysis inhibitor (TAFI). This work reveals novel interactions of the omptins of Y. pestis and S. enterica with the regulators of the plasminogen/fibrinolytic system: Pla and PgtE inactivate PAI-1 by cleavage at the reactive site peptide bond, and degrade TAFI, preventing its activation to TAFIa. Structure-function relationship studies with Pla showed that threonine 259 of Pla is crucial in plasminogen activation, as it prevents degradation of the plasmin catalytic domain by the omptin and thus maintains plasmin stability. In this work I constructed chimeric proteins between Pla and Epo of Erwinia pyrifoliae that share 78% sequence identity to find out which amino acids and regions in Pla are important for its functions. Epo is neither a plasminogen activator nor an invasin, but it degrades α2AP and PAI-1. Cumulative substitutions towards Pla sequence turned Epo into a Pla-like protein. In addition to threonine 259, loops 3 and 5 are critical in plasminogen activation by Pla. Turning Epo into an invasin required substitution of 31 residues located at the extracellular side of the Epo protein above the lipid bilayer, and also of the β1-strand in the N-terminal transmembrane region of the protein. These studies give an example of how omptins adapt to novel functions that advantage their host bacteria in different ecological niches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Salmonella enterica serovar Typhimurium is a common cause of gastroenteritis in humans and, occasionally, also causes systemic infection. During systemic infection an important characteristic of Salmonella is its ability to survive and replicate within macrophages. The outer membrane protease PgtE of S. enterica is a member of the omptin family of outer membrane aspartate proteases, which are beta-barrel proteins with five surface-exposed loops. The main goals of this study were to characterize biological substrates and pathogenesis-associated functions of PgtE and to determine the conditions where PgtE is fully active. In this study we found that PgtE requires rough lipopolysaccharide (LPS) to be functional but is sterically inhibited by the long O-antigen side chain in smooth LPS. Salmonella isolates normally are smooth with a long oligosaccharide O-antigen, and PgtE remains functionally cryptic in wild-type Salmonella cultivated in vitro. Interestingly, our results showed that due to increased expression of PgtE and to reduced length of the LPS O-antigen chains, the wild-type Salmonella expresses highly functional PgtE when isolated from mouse macrophage-like J774A.1 cells. Salmonella is thought to be continuously released from macrophages to infect new ones, and our results suggest that PgtE is functional during these transient extracellular growth phases. Six novel host protein substrates were identified for PgtE in this work. PgtE was previously known to activate human plasminogen (Plg) to plasmin, a broad-spectrum serine protease, and in this study PgtE was shown to interfere with the Plg system by inactivating the main inhibitor of plasmin, alpha2-antiplasmin. PgtE also interferes with another important proteolytic system of mammals by activating pro-matrix metalloproteinase-9 to an active gelatinase. PgtE also directly degrades gelatin, a component of extracellular matrices. PgtE also increases bacterial resistance against complement-mediated killing in human serum and enhances survival of Salmonella within murine macrophages as well as in the liver and spleen of intraperitoneally infected mice. Taken together, the results in this study suggest that PgtE is a virulence factor of Salmonella that has adapted to interfere with host proteolytic systems and to modify extracellular matrix; these features likely assist the migration of Salmonella during systemic salmonellosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study aims to elucidate the modifications in the structure and functionality of the phospholipid matrix of biological membranes brought about by free radical-mediated oxidative damage of its molecular constituents. To this end, the surface properties of two oxidatively modified phospholipids bearing an aldehyde or carboxyl function at the end of truncated sn-2 acyl chain were studied using a Langmuir balance. The results obtained reveal both oxidized species to have a significant impact on the structural dynamics of phospholipid monolayers, as illustrated by the progressive changes in force-area isotherms with increasing mole fraction of the oxidized lipid component. Moreover, surface potential measurements revealed considerable modifications in the electric properties of oxidized phospholipid containing monolayers during film compression, suggesting a packing state-controlled reorientation of the intramolecular electric dipoles of the lipid headgroups and acyl chains. Based on the above findings, a model describing the conformational state of oxidized phospholipid molecules in biological membranes is proposed, involving the protrusion of the acyl chains bearing the polar functional groups out from the hydrocarbon phase to the surrounding aqueous medium. Oxidative modifications alter profoundly the physicochemical properties of unsaturated phospholipids and are therefore readily anticipated to have important implications for their interactions with membrane-associating molecules. Along these lines, the carboxyl group bearing lipid was observed to bind avidly the peripheral membrane protein cytochrome c. The binding was reversed following increase in ionic strength or addition of polyanionic ATP, thus suggesting it to be driven by electrostatic interactions between cationic residues of the protein and the deprotonated lipid carboxyl exposed to the aqueous phase. The presence of aldehyde function bearing oxidized phospholipid was observed to enhance the intercalation of four antimicrobial peptides into phospholipid monolayers and liposomal bilayers. Partitioning of the peptides to monolayers was markedly attenuated by the aldehyde scavenger methoxyamine, revealing it to be mediated by the carbonyl moiety possibly through efficient hydrogen bonding or, alternatively, formation of covalent adduct in form of a Schiff base between the lipid aldehydes and primary amine groups of the peptide molecules. Lastly, both oxidized phospholipid species were observed to bind with high affinity three small membrane-partitioning therapeutic agents, viz. chlorpromazine, haloperidol, and doxorubicin. In conclusion, the results of studies conducted using biomimetic model systems support the notion that oxidative damage influences the molecular architecture as well as the bulk physicochemical properties of phospholipid membranes. Further, common polar functional groups carried by phospholipids subjected to oxidation were observed to act as molecular binding sites at the lipid-water interface. It is thus plausible that oxidized phospholipid species may elicit cellular level effects by modulating integration of various membrane-embedded and surface-associated proteins and peptides, whose conformational state, oligomerization, and functionality is known to be controlled by highly specific lipid-protein interactions and proper physical state of the membrane environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitochondria have evolved from endosymbiotic alpha-proteobacteria. During the endosymbiotic process early eukaryotes dumped the major component of the bacterial cell wall, the peptidoglycan layer. Peptidoglycan is synthesized and maintained by active-site serine enzymes belonging to the penicillin-binding protein and the β-lactamase superfamily. Mammals harbor a protein named LACTB that shares sequence similarity with bacterial penicillin-binding proteins and β-lactamases. Since eukaryotes lack the synthesis machinery for peptidoglycan, the physiological role of LACTB is intriguing. Recently, LACTB has been validated in vivo to be causative for obesity, suggesting that LACTB is implicated in metabolic processes. The aim of this study was to investigate the phylogeny, structure, biochemistry and cell biology of LACTB in order to elucidate its physiological function. Phylogenetic analysis revealed that LACTB has evolved from penicillin binding-proteins present in the bacterial periplasmic space. A structural model of LACTB indicates that LACTB shares characteristic features common to all penicillin-binding proteins and β-lactamases. Recombinat LACTB protein expressed in E. coli was recovered in significant quantities. Biochemical and cell biology studies showed that LACTB is a soluble protein localized in the mitochondrial intermembrane space. Further analysis showed that LACTB preprotein underwent proteolytic processing disclosing an N-terminal tetrapeptide motif also found in a set of cell death-inducing proteins. Electron microscopy structural studies revealed that LACTB can polymerize to form stable filaments with lengths ranging from twenty to several hundred nanometers. These data suggest that LACTB filaments define a distinct microdomain in the intermembrane space. A possible role of LACTB filaments is proposed in the intramitochondrial membrane organization and microcompartmentation. The implications of these findings offer novel insight into the evolution of mitochondria. Further studies of the LACTB function might provide a tool to treat mitochondria-related metabolic diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The repair of corneal wounds requires both epithelial cell adhesion and migration. Basement membrane (BM) and extracellular matrix (ECM) proteins function in these processes via integrin and non-integrin receptors. We have studied the adhesion, spreading and migration of immortalized human corneal epithelial (HCE) cells and their interactions with the laminins (Lms), fibronectins and tenascins produced. Human corneal BM expresses Lms-332 and -511, while Lm-111 was not found in these experiments. HCE cells produced both processed and unprocessed Lm-332, whereas neither Lm-111 nor Lm-511 was produced. Because HCE cells did not produce Lm-511, although it was present in corneal BM, we suggest that Lm-511 is produced by stromal keratocytes. The adhesion of HCE cells to Lms-111, -332 and -511 was studied first by determining the receptor composition of HCE cells and then by using quantitative cell adhesion assays. Immunofluorescence studies revealed the presence of integrin α2, α3, α6, β1 and β4 subunits. Among the non-integrin receptors, Lutheran (Lu) was found on adhering HCE cells. The cells adhered via integrin α3β1 to both purified human Lms-332 and -511 as well as to endogenous Lm-332. However, only integrin β1 subunit functioned in HCE cell adhesion to mouse Lm-111. The adhesion of HCE cells to Lm-511 was also mediated by Lu. Since Lm-511 did not induce Lu into focal adhesions in HCE cells, we suggest that Lm-511 serves as an ECM ligand enabling cell motility. HCE cells produced extradomain-A fibronectin, oncofetal fibronectin and tenascin-C (Tn-C), which are also found during corneal wound healing. Monoclonal antibodies (MAbs) against integrins α5β1 and αvβ6 as well as the arginine-glycine-aspartic acid (RGD) peptide inhibited the adhesion of HCE cells to fibronectin. Although the cells did not adhere to Tn-C, they adhered to the fibronectin/Tn-C coat and were then more efficiently inhibited by the function-blocking MAbs and RGD peptide. During the early adhesion, HCE cells codeposited Lm-332 and the large subunit of tenascin-C (Tn-CL) beneath the cells via the Golgi apparatus and microtubules. Integrin β4 subunit, which is a hemidesmosomal component, did not mediate the early adhesion of HCE cells to Lm-332 or Lm-332/Tn-C. Based on these results, we suggest that the adhesion of HCE cells is initiated by Lm-332 and modulated by Tn-CL, as it has been reported to prevent the assembly of hemidesmosomes. Thereby, Tn-CL functions in the motility of HCE cells during wound healing. The different distribution of processed and unprocessed Lm-332 in adhering, spreading and migrating HCE cells suggests a distinct role for these isoforms. We conclude that the processed Lm-332 functions in cell adhesion, whereas the unprocessed Lm-332 participates in cell spreading and migration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Streptococcus pyogenes (group A streptococcus) is an important human pathogen, causing a wide array of infections ranging in severity. The majority of S. pyogenes infections are mild upper respiratory tract or skin infections. Severe, invasive infections, such as bacteraemia, are relatively rare, but constitute a major global burden with a high mortality. Certain streptococcal types are associated with a more severe disease and higher mortality. Bacterial, non-necrotizing cellulitis and erysipelas are localised infections of the skin, and although they are usually not life-threatening, they have a tendency to recur and therefore cause substantial morbidity. Despite several efforts aimed at developing an effective and safe vaccine against S. pyogenes infections, no vaccine is yet available. In this study, the epidemiology of invasive S. pyogenes infections in Finland was described over a decade of national, population-based surveillance. Recent trends in incidence, outcome and bacterial types were investigated. The beta-haemolytic streptococci causing cellulitis and erysipelas infections in Finland were studied in a case-control study. Bacterial isolates were characterised using both conventional and molecular typing methods, such as the emm typing, which is the most widely used typing method for beta-haemolytic streptococci. The incidence of invasive S. pyogenes disease has had an increasing trend during the past ten years in Finland, especially from 2006 onwards. Age- and sex-specific differences in the incidence rate were identified, with men having a higher incidence than women, especially among persons aged 45-64 years. In contrast, more infections occurred in women aged 25-34 years than men. Seasonal patterns with occasional peaks during the midsummer and midwinter were observed. Differences in the predisposing factors and underlying conditions of patients may contribute to these distinctions. Case fatality associated with invasive S. pyogenes infections peaked in 2005 (12%) but remained at a reasonably low level (8% overall during 2004-2007) compared to that of other developed countries (mostly exceeding 10%). Changes in the prevalent emm types were associated with the observed increases in incidence and case fatality. In the case-control study, acute bacterial non-necrotizing cellulitis was caused predominantly by Streptococcus dysgalactiae subsp. equisimilis, instead of S. pyogenes. The recurrent nature of cellulitis became evident. This study adds to our understanding of S. pyogenes infections in Finland and provides a basis for comparison to other countries and future trends. emm type surveillance and outcome analyses remain important for detecting such changes in type distribution that might lead to increases in incidence and case fatality. Bacterial characterisation serves as a basis for disease pathogenesis studies and vaccine development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pectobacterium atrosepticum on Gram-negatiivinen bakteeri, joka aiheuttaa perunan tyvi- ja märkämätää. P. atrosepticum bakteerin optimilämpötila on melko alhainen ja se on yleinen lauhkeilla alueilla. Tyvimätä leviää pääasiassa siemenperunan välityksellä ja siksi se on ongelma erityisesti siemenperunan tuotannossa. P. atrosepticum kannan SCRI1043 genomi on julkaistu ja sitä tutkitaan malliorganismina märkä- ja tyvimädän taudinaiheuttamisen ymmärtämiseksi. Tämä opportunistinen taudinaiheuttaja voi elää isäntäkasvissa kuukausia piilevänä, aiheuttamatta näkyviä oireita. Suotuisissa olosuhteissa bakteerit alkavat jakautua ja tuottaa kasvin kudoksia hajottavia entsyymejä. Mädäntyvä kasvimassa tarjoaa ravinteita bakteerien kasvuun ja mahdollistaa isäntäkasvin asuttamisen. Soluseiniä hajottavien entsyymien merkitys taudinaiheuttamisessa on hyvin tunnettu, mutta oireettomasta jaksosta ja taudin alkuvaiheista tiedätään vain vähän. Bakteerin genomi sisältää monia toksiineja, adhesiineja, hemolysiineja ja muita proteiineja, joilla saattaa olla merkitys taudinaiheuttamisessa. Tässä työssä käytettiin proteomiikkaa ja mikrosiruanalysiä P. atrosepticum bakteerin erittyvien proteiinien ja geeniekspression tutkimiseen. Proteiinit, jotka eritetään ulos bakteerista, toimivat todennäköisesti taudinaiheuttamisessa, koska ne ovat suorassa kontaktissa isäntäkasvin kanssa. Analyysit suoritettiin olosuhteissa, jotka muistuttavat kasvin soluvälitilaa: matala pH, vähän ravinteita ja matala lämpötila. Isäntäkasvin läsnäolon vaikutusta proteiinien tuottoon ja geeniekspressioon tutkittiin lisäämällä perunauutetta kasvatusalustaan. Tutkimuksessa tunnistettiin P. atrosepticum bakteerin monia jo tunnettuja ja mahdollisesti taudinaiheuttamiseen liittyviä proteiineja. Perunauute lisäsi hiljattain tunnistetun, proteiinien eritysreittiä (tyyppi VI sekreetio, T6SS) koodaavien geenien ilmentymistä. Lisäksi bakteerin havaittiin erittävän useita T6SS:n liittyviä proteiineja kasvualustaan, johon oli lisätty perunauutetta. T6SS:n merkitys bakteereille on vielä epäselvä ja sen vaikutuksesta taudinaiheuttamiseen on julkaistu ristiriitaisia tuloksia. Märkä- ja tyvimädän ymmärtäminen molekulaarisella tasolla luo pohjan tautien kontrollointiin tähtäävään soveltavaan tutkimukseen. Tämä tutkimus lisää tietoa kasvi-patogeeni- interaktiosta ja sitä voidaan tulevaisuudessa käyttää hyväksi esimerkiksi diagnostiikassa, resistenttien perunalajikkeiden jalostuksessa tai viljely- ja varastointiolosuhteiden parantamisessa.