8 resultados para UROGENITAL SYSTEM DISEASES
em Helda - Digital Repository of University of Helsinki
Resumo:
The central nervous system (CNS) is the most cholesterol-rich organ in the body. Cholesterol is essential to CNS functions such as synaptogenesis and formation of myelin. Significant differences exist in cholesterol metabolism between the CNS and the peripheral organs. However, the regulation of cholesterol metabolism in the CNS is poorly understood compared to our knowledge of the regulation of cholesterol homeostasis in organs reached by cholesterol-carrying lipoprotein particles in the circulation. Defects in CNS cholesterol homeostasis have been linked to a variety of neurodegenerative diseases, including common diseases with complex pathogenetic mechanisms such as Alzheimer s disease. In spite of intense effort, the mechanisms which link disturbed cholesterol homeostasis to these diseases remain elusive. We used three inherited recessive neurodegenerative disorders as models in the studies included in this thesis: Niemann-Pick type C (NPC), infantile neuronal ceroid lipofuscinosis and cathepsin D deficiency. Of these three, NPC has previously been linked to disturbed intracellular cholesterol metabolism. Elucidating the mechanisms with which disturbances of cholesterol homeostasis link to neurodegeneration in recessive inherited disorders with known genetic lesions should shed light on how cholesterol is handled in the healthy CNS and help to understand how these and more complex diseases develop. In the first study we analyzed the synthesis of sterols and the assembly and secretion of lipoprotein particles in Npc1 deficient primary astrocytes. We found that both wild type and Npc1 deficient astrocytes retain significant amounts of desmosterol and other cholesterol precursor sterols as membrane constituents. No difference was observed in the synthesis of sterols and the secretion of newly synthesized sterols between Npc1 wild type, heterozygote or knockout astrocytes. We found that the incorporation of newly synthesized sterols into secreted lipoprotein particles was not inhibited by Npc1 mutation, and the lipoprotein particles were similar to those excreted by wild type astrocytes in shape and size. The bulk of cholesterol was found to be secreted independently of secreted NPC2. These observations demonstrate the ability of Npc1 deficient astrocytes to handle de novo sterols, and highlight the unique sterol composition in the developing brain. Infantile neuronal ceroid lipofuscinosis is caused by the deficiency of a functional Ppt1 enzyme in the cells. In the second study, global gene expression studies of approximately 14000 mouse genes showed significant changes in the expression of 135 genes in Ppt1 deficient neurons compared to wild type. Several genes encoding for enzymes of the mevalonate pathway of cholesterol biosynthesis showed increased expression. As predicted by the expression data, sterol biosynthesis was found to be upregulated in the knockout neurons. These data link Ppt1 deficiency to disturbed cholesterol metabolism in CNS neurons. In the third study we investigated the effect of cathepsin D deficiency on the structure of myelin and lipid homeostasis in the brain. Our proteomics data, immunohistochemistry and western blotting data showed altered levels of the myelin protein components myelin basic protein, proteolipid protein and 2 , 3 -cyclic nucleotide 3 phosphodiesterase in the brains of cathepsin D deficient mice. Electron microscopy revealed altered myelin structure in cathepsin D deficient brains. Additionally, plasmalogen-derived alkenyl chains and 20- and 24-carbon saturated and monounsaturated fatty acids typical for glycosphingolipids were found to be significantly reduced, but polyunsaturated species were significantly increased in the knockout brains, pointing to a decrease in white matter. The levels of ApoE and ABCA1 proteins linked to cholesterol efflux in the CNS were found to be altered in the brains of cathepsin D deficient mice, along with an accumulation of cholesteryl esters and a decrease in triglycerols. Together these data demonstrate altered myelin architecture in cathepsin D deficient mice and link cathepsin D deficiency to aberrant cholesterol metabolism and trafficking. Basic research into rare monogenic diseases sheds light on the underlying biological processes which are perturbed in these conditions and contributes to our understanding of the physiological function of healthy cells. Eventually, understanding gained from the study of disease models may contribute towards establishing treatment for these disorders and further our understanding of the pathogenesis of other, more complex and common diseases.
Resumo:
The mitochondrion is an organelle of outmost importance, and the mitochondrial network performs an array of functions that go well beyond ATP synthesis. Defects in mitochondrial performance lead to diseases, often affecting nervous system and muscle. Although many of these mitochondrial diseases have been linked to defects in specific genes, the molecular mechanisms underlying the pathologies remain unclear. The work in this thesis aims to determine how defects in mitochondria are communicated within - and interpreted by - the cells, and how this contributes to disease phenotypes. Fumarate hydratase (FH) is an enzyme of the citrate cycle. Recessive defects in FH lead to infantile mitochondrial encephalopathies, while dominant mutations predispose to tumor formation. Defects in succinate dehydrogenase (SDH), the enzyme that precedes FH in the citrate cycle, have also been described. Mutations in SDH subunits SDHB, SDHC and SDHD are associated with tumor predisposition, while mutations in SDHA lead to a characteristic mitochondrial encephalopathy of childhood. Thus, the citrate cycle, via FH and SDH, seems to have essential roles in mitochondrial function, as well as in the regulation of processes such as cell proliferation, differentiation or death. Tumor predisposition is not a typical feature of mitochondrial energy deficiency diseases. However, defects in citrate cycle enzymes also affect mitochondrial energy metabolism. It is therefore necessary to distinguish what is specific for defects in citrate cycle, and thus possibly associated with the tumor phenotype, from the generic consequences of defects in mitochondrial aerobic metabolism. We used primary fibroblasts from patients with recessive FH defects to study the cellular consequences of FH-deficiency (FH-). Similarly to the tumors observed in FH- patients, these fibroblasts have very low FH activity. The use of primary cells has the advantage that they are diploid, in contrast with the aneuploid tumor cells, thereby enabling the study of the early consequences of FH- in diploid background, before tumorigenesis and aneuploidy. To distinguish the specific consequences of FH- from typical consequences of defects in mitochondrial aerobic metabolism, we used primary fibroblasts from patients with MELAS (mitochondrial encephalopathy with lactic acidosis and stroke-like episodes) and from patients with NARP (neuropathy, ataxia and retinitis pigmentosa). These diseases also affect mitochondrial aerobic metabolism but are not known to predispose to tumor formation. To study in vivo the systemic consequences of defects in mitochondrial aerobic metabolism, we used a transgenic mouse model of late-onset mitochondrial myopathy. The mouse contains a transgene with an in-frame duplication of a segment of Twinkle, the mitochondrial replicative helicase, whose defects underlie the human disease progressive external ophthalmoplegia. This mouse model replicates the phenotype in the patients, particularly neuronal degeneration, mitochondrial myopathy, and subtle decrease of respiratory chain activity associated with mtDNA deletions. Due to the accumulation of mtDNA deletions, the mouse was named deletor. We first studied the consequences of FH- and of respiratory chain defects for energy metabolism in primary fibroblasts. To further characterize the effects of FH- and respiratory chain malfunction in primary fibroblasts at transcriptional level, we used expression microarrays. In order to understand the in vivo consequences of respiratory chain defects in vivo, we also studied the transcriptional consequences of Twinkle defects in deletor mice skeletal muscle, cerebellum and hippocampus. Fumarate accumulated in the FH- homozygous cells, but not in the compound heterozygous lines. However, virtually all FH- lines lacked cytoplasmic FH. Induction of glycolysis was common to FH-, MELAS and NARP fibroblasts. In deletor muscle glycolysis seemed to be upregulated. This was in contrast with deletor cerebellum and hippocampus, where mitochondrial biogenesis was in progress. Despite sharing a glycolytic pattern in energy metabolism, FH- and respiratory chain defects led to opposite consequences in redox environment. FH- was associated with reduced redox environment, while MELAS and NARP displayed evidences of oxidative stress. The deletor cerebellum had transcriptional induction of antioxidant defenses, suggesting increased production of reactive oxygen species. Since the fibroblasts do not represent the tissues where the tumors appear in FH- patients, we compared the fibroblast array data with the data from FH- leiomyomas and normal myometrium. This allowed the determination of the pathways and networks affected by FH-deficiency in primary cells that are also relevant for myoma formation. A key pathway regulating smooth muscle differentiation, SRF (serum response factor)-FOS-JUNB, was found to be downregulated in FH- cells and in myomas. While in the deletor mouse many pathways were affected in a tissue-specific basis, like FGF21 induction in the deletor muscle, others were systemic, such as the downregulation of ALAS2-linked heme synthesis in all deletor tissues analyzed. However, interestingly, even a tissue-specific response of FGF21 excretion could elicit a global starvation response. The work presented in this thesis has contributed to a better understanding of mitochondrial stress signalling and of pathways interpreting and transducing it to human pathology.
Resumo:
Type 1 diabetes (T1D) is considered to be an autoimmune disease. The cause of T1D is the destruction of insulin-producing β-cells in the pancreatic islets. The autoimmune nature of T1D is characterized by the presence of autoreactive T-cells and autoantibodies against β-cell molecules. Insulin is the only β-cell-specific autoantigen associated with T1D but the insulin autoantibodies (IAAs) are difficult to measure with proper sensitivity. T-cell assays for detection of autoreactive T-cells, such as insulin-specific T-cells, have also proven to be difficult to perform. The genetic risk of T1D is associated with the HLA gene region but the environmental factors also play an important role. The most studied environmental risk factors of T1D are enteroviruses and cow's milk which both affect the immune system through the gut. One hypothesis is that the insulin-specific immune response develops against bovine insulin in cow's milk during early infancy and later spreads to include human insulin. The aims of this study were to determine whether the separation of immunoglobulin (Ig)G from plasma would improve the sensitivity of the IAA assay and how insulin treatment affects the cellular immune response to insulin in newly diagnosed patients. Furthermore, the effect of insulin concentration in mother's breast milk on the development of antibodies to dietary insulin in the child was examined. Small intestinal biopsies were also obtained from children with T1D to characterize any immunological changes associated with T1D in the gut. The isolation of the IgG fraction from the plasma of T1D patients negative for plasma IAA led to detectable IAA levels that exceeded those in the control children. Thus the isolation of IgG may improve the sensitivity of the IAA assay. The effect of insulin treatment on insulin-specific T-cells was studied by culturing peripheral blood mononuclear cells with insulin. The insulin stimulation induced increased expression of regulatory T-cell markers, such as Foxp3, in those patients treated with insulin than in patients examined before initiating insulin treatment. This finding suggests that insulin treatment in patients with T1D stimulates regulatory T-cells in vivo and this may partly explain the difficulties in measuring autoantigen-specific T-cell responses in recently diagnosed patients. The stimulation of regulatory T-cells by insulin treatment may also explain the remission period often seen after initiating insulin treatment. In the third study we showed that insulin concentration in mother's breast milk correlates inversely with the levels of bovine insulin-specific antibodies in those infants who were exposed to cow's milk proteins in their diet, suggesting that human insulin in breast milk induces tolerance to dietary bovine insulin. However, in infants who later developed T1D-associated autoantibodies, the insulin concentration in their mother's breast milk was increased. This finding may indicate that in those children prone to β-cell autoimmunity, breast milk insulin does not promote tolerance to insulin. In the small intestinal biopsies the presence of several immunological markers were quantified with the RT-PCR. From these markers the expression of the interleukin (IL)-18 cytokine was significantly increased in the gut in patients with T1D compared with children with celiac disease or control children. The increased IL-18 expression lends further support for the hypothesis that the gut immune system is involved in the pathogenesis of T1D.
Resumo:
The possible carcinogenic risk of immunosuppressive therapies is an important issue in everyday clinical practise. Carcinogenesis is a slow multi step procedure, thus a long latency period is needed before cancer develops. PUVA therapy is used for many skin diseases including psoriasis, early stage cutaneous T cell lymphoma, atopic dermatitis, palmoplantar pustulosis and chronic eczema. There has been concern about the increased melanoma risk associated to PUVA therapy, which has previously been associated with an increased risk on non-melanoma skin cancer, especially squamous cell carcinoma. The increased risk of basal cell carcinoma (BCC) is also documented but it is modest compared to squamous cell carcinoma (SCC). This thesis evaluated melanoma and noncutaneous cancer risk associated to PUVA, and the persistence of nonmelanoma cancer risk after the cessation of PUVA treatment. Also, the influence of photochemotherapy to the development of secondary cancers in cutaneous T cell lymphoma and the role of short term cyclosporine in later cancer development in inflammatory skin diseases were evaluated. The first three studies were performed on psoriasis patients. The risk of melanoma started to increase 15 years after the first treatment with PUVA. The risk was highest among persons who had received over 250 treatments compared to those under 250 treatments. In noncutaneous cancer, the overall risk was not increased (RR=1.08,95% CI=0.93-1.24), but significant increases in risk were found in thyroid cancer, breast cancer and in central nervous system neoplasms. These cancers were not associated to PUVA. The increased risk of SCC was associated to high cumulative UVA exposure in the PUVA regimen. The patients with high risk had no substantial exposure to other carcinogens. In BCC there was a similar but more modest tendency. In the two other studies, the risk of all secondary cancers (SIR) in CTCL patients was 1.4 (95% CI=1.0-1.9). In separate sites, the risk of lung cancer, Hodgkin and non-Hodgkin lymphomas were increased. PUVA seemed not to contribute to any extent to the appearance of these cancers. The carcinogenity of short-term cyclosporine was evaluated in inflammatory skin diseases. No increased risk for any type of cancer including the skin cancers was detected. To conclude, our studies confirm the increased skin cancer risk related to PUVA treatment in psoriasis patients. In clinical practice, this has led to a close and permanent follow-up of patients treated with PUVA. In CTCL patients, PUVA treatment did not contribute to the development of secondary cancers. We could not detect any increase in the risk of cancer in patients treated with short term cyclosporine, unlike in organ transplant patients under such long-term therapy.
Resumo:
Most of the diseases affecting public health, like hypertension, are multifactorial by etiology. Hypertension is influenced by genetic, life style and environmental factors. Estimation of the influence of genes to the risk of essential hypertension varies from 30 to 50%. It is plausible that in most of the cases susceptibility to hypertension is determined by the action of more than one gene. Although the exact molecular mechanism underlying essential hypertension remains obscure, several monogenic forms of hypertension have been identified. Since common genetic variations may predict, not only to susceptibility to hypertension, but also response to antihypertensive drug therapy, pharmacogenetic approaches may provide useful markers in finding relations between candidate genes and phenotypes of hypertension. The aim of this study was to identify genetic mutations and polymorphisms contributing to human hypertension, and examine their relationships to intermediate phenotypes of hypertension, such as blood pressure (BP) responses to antihypertensive drugs or biochemical laboratory values. Two groups of patients were investigated in the present study. The first group was collected from the database of patients investigated in the Hypertension Outpatient Ward, Helsinki University Central Hospital, and consisted of 399 subjects considered to have essential hypertension. Frequncies of the mutant or variant alleles were compared with those in two reference groups, healthy blood donors (n = 301) and normotensive males (n = 175). The second group of subjects with hypertension was collected prospectively. The study subjects (n=313) underwent a protocol lasting eight months, including four one-month drug treatment periods with antihypertensive medications (thiazide diuretic, β-blocker, calcium channel antagonist, and an angiotensin II receptor antagonist). BP responses and laboratory values were related to polymorphims of several candidate genes of the renin-angiotensin system (RAS). In addition, two patients with typical features of Liddle’s syndrome were screened for mutations in kidney epithelial sodium channel (ENaC) subunits. Two novel mutations causing Liddle’s syndrome were identified. The first mutation identified located in the beta-subunit of ENaC and the second mutation found located in the gamma-subunit, constituting the first identified Liddle mutation locating in the extracellular domain. This mutation showed 2-fold increase in channel activity in vitro. Three gene variants, of which two are novel, were identified in ENaC subunits. The prevalence of the variants was three times higher in hypertensive patients (9%) than in reference groups (3%). The variant carriers had increased daily urinary potassium excretion rate in relation to their renin levels compared with controls suggesting increased ENaC activity, although in vitro they did not show increased channel activity. Of the common polymorphisms of the RAS studied, angiotensin II receptor type I (AGTR1) 1166 A/C polymorphism was associated with modest changes in RAS activity. Thus, patients homozygous for the C allele tended to have increased aldosterone and decreased renin levels. In vitro functional studies using transfected HEK293 cells provided additional evidence that the AGTR1 1166 C allele may be associated with increased expression of the AGTR1. Common polymorphisms of the alpha-adducin and the RAS genes did not significantly predict BP responses to one-month monotherapies with hydroclorothiazide, bisoprolol, amlodipin, or losartan. In conclusion, two novel mutations of ENaC subunits causing Liddle’s syndrome were identified. In addition, three common ENaC polymorphisms were shown to be associated with occurrence of essential hypertension, but their exact functional and clinical consequences remain to be explored. The AGTR1 1166 C allele may modify the endocrine phenotype of hypertensive patients, when present in homozygous form. Certain widely studied polymorphisms of the ACE, angiotensinogen, AGTR1 and alpha-adducin genes did not significantly affect responses to a thiazide, β-blocker, calcium channel antagonist, and angiotensin II receptor antagonist.
Resumo:
The rapid increase in allergic diseases in developed, high-income countries during recent decades is attributed to several changes in the environment such as urbanization and improved hygiene. This relative lack of microbial stimulation is connected to a delay in maturation of the infantile immune system and seems to predispose especially genetically prone infants to allergic diseases. Probiotics, which are live ingestible health-promoting microbes, may compensate for the lack of microbial stimulation of the developing gut immune system and may thus be beneficial in prevention of allergies. Prebiotics, which are indigestible nutrients by us, promote the growth and activity of a number of bacterial strains considered beneficial for the gut. In a large cohort of 1 223 infants at hereditary risk for allergies we studied in a double-blind placebo-controlled manner whether probiotics administered in early life prevent allergic diseases from developing. We also evaluated their safety and their effects on common childhood infections, vaccine antibody responses, and intestinal immune markers. Pregnant mothers used a mixture of four probiotic bacteria or a placebo, from their 36th week of gestation. Their infants received the same probiotics plus prebiotic galacto-oligosaccharides for 6 months. The 2-year follow-up consisted of clinical examinations and allergy tests, fecal and blood sampling, and regular questionnaires. Among the 925 infants participating in the 2-year follow-up the cumulative incidence of any allergic disease (food allergy, eczema, asthma, rhinitis) was comparable in the probiotic (32%) and the placebo (35%) group. However, eczema, which was the most common manifestation (88%) of all allergic diseases, occurred less frequently in the probiotic (26%) than in the placebo group (32%). The preventive effect was more pronounced against atopic (IgE-associated) eczema which, of all atopic diseases, accounted for 92%. The relative risk reduction of eczema was 26% and of atopic eczema 34%. To prevent one case of eczema, the number of mother-infant pairs needed to treat was 16. Probiotic treatment was safe without any undesirable outcome for neonatal morbidity, feeding-related behavior, serious adverse events, growth, or for vaccine-induced antibody responses. Fewer infants in the probiotic than in the placebo group received antibiotics during their first 6 months of life and thereafter to age 2 years suffered from fewer respiratory tract infections. As a novel finding, we discovered that high fecal immunoglobulin A (IgA) concentrations at age 6 months associated with reduced risk for atopic (IgE-associated) diseases by age 2 years. In conclusion, although feeding probiotics to high-risk newborn infants showed no preventive effect on the cumulative incidence of any allergic diseases by age 2, they apparently prevented eczema. This probiotic effect was more pronounced among IgE-sensitized infants. The treatment was safe and seemed to stimulate maturation of the immune system as indicated by increased resistance to respiratory infections and improved vaccine antibody responses.
Resumo:
Infectious diseases put an enormous burden on both children and the elderly in the forms of respiratory, gastrointestinal and oral infections. There is evidence suggesting that specific probiotics may be antagonistic to pathogens and may enhance the immune system, but the clinical evidence is still too sparce to make general conclusions on the disease-preventive effects of probiotics. This thesis, consisting of four independent, double-blind, placebo-controlled clinical trials, investigated whether Lactobacillus GG (LGG) or a specific probiotic combination containing LGG would reduce the risk of common infections or the prevalence of pathogens in healthy and infection-prone children and in independent and institutionalised elderly people. In healthy day-care children, the 7-month consumption of probiotic milk containing Lactobacillus GG appeared to postpone the first acute respiratory infection (ARI) by one week (p=0.03, adjusted p=0.16), and to reduce complicated infections (39% vs. 47%, p<0.05, adjusted p=0.13), as well as the need for antibiotic treatment (44% vs. 54%, p=0.03, adjusted p=0.08) and day-care absences (4.9 vs. 5.8 days, p=0.03, adjusted p=0.09) compared to the placebo milk. In infection-prone children, the 6-month consumption of a combination of four probiotic bacteria (LGG, L. rhamnosus LC705, Propionibacterium freudenreichii JS, Bifidobacterium breve 99) taken in capsules appeared to reduce recurrent ARIs (72% vs. 82%, p<0.05; adjusted p=0.06), and the effect was particularly noticeable in a subgroup of children with allergic diseases (12% vs. 33%, p=0.03), although no effect on the presence of nasopharyngeal rhinovirus or enterovirus was seen. The 5-month consumption of the same probiotic combination did not show any beneficial effects on the respiratory infections in frail, institutionalised elderly subjects. In healthy children receiving Lactobacillus GG, the reduction in complications resulted in a marginal reduction in the occurrence of acute otitis media (AOM) (31% vs. 39%, p=0.08; adjusted p=0.19), and the postponement of the first AOM episode by 12 days (p=0.04; adjusted p=0.09). However, in otitis-prone children, a probiotic combination did not reduce the occurrence of AOM or the total prevalence of common AOM pathogens (Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis), except in the case of children with allergic diseases, in whom probiotics reduced recurrent AOM episodes (0% vs. 14%, p=0.03). In addition, interaction between probiotics and bacterial carriage was seen: probiot-ics reduced AOM in children who did not carry any bacterial pathogens (63% vs. 83%), but the effect was the reverse in children carrying bacteria in the nasopharynx (74% vs 62%) (p<0.05). Long-term probiotic treatment, either LGG given in milk to healthy children for 7 months or a combination of probiotics given in capsules to institutionalised elderly subjects for 5 months, did not reduce the occurrence of acute diarrhoea. However, when the probiotic combination (LGG, L. rhamnosus LC705, Propionibacterium JS) was given in cheese to independent elderly subjects for 4 months, the oral carriage of high Candida counts was reduced in the probiotic group vs. the placebo group (21% vs. 34%, p=0.01, adjusted p=0.004). The risk of hyposalivation was also reduced in the probiotic group (p=0.05). In conclusion, probiotics appear to slightly alleviate the severity of infections by postponing their appearance, by reducing complications and the need for antimicrobial treatments. In addition, they appear to prevent recurrent infections in certain subgroups of children, such as in infection-prone children with allergic diseases. Alleviating ARI by probiotics may lead to a marginal reduction in the occurrence of AOM in healthy children but not in infection-prone children with disturbed nasopharyngeal microbiota. On the basis of these results it could be supposed that Lactobacillus GG or a specific combination containing LGG are effective against viral but not against bacterial otitis, and the mechanism is probably mediated through the stimulation of the immune system. A specific probiotic combination does not reduce respiratory infections in frail elderly subjects. Acute diarrhoea, either in children or in the elderly, is not prevented by the continuous, long-term consumption of probiotics, but the consumption of a specific probiotic combination in a food matrix is beneficial to the oral health of the elderly, through the reduction of the carriage of Candida.
Resumo:
The occurrence of gestational diabetes (GDM) during pregnancy is a powerful sign of a risk of later type 2 diabetes (T2D) and cardiovascular diseases (CVDs). The physiological basis for this disease progression is not yet fully understood, but increasing evidence exists on interplay of insulin resistance, subclinical inflammation, and more recently, on unbalance of the autonomic nervous system. Since the delay in development of T2D and CVD after GDM ranges from years to decades, better understanding of the pathophysiology of GDM could give us new tools for primary prevention. The present study was aimed at investigating the role of the sympathetic nervous system (SNS) in GDM and its associations with insulin and a variety of inflammatory cytokines and coagulation and fibrinolysis markers. This thesis covers two separate study lines. Firstly, we investigated 41 women with GDM and 22 healthy pregnant and 14 non-pregnant controls during the night in hospital. Blood samples were drawn at 24:00, 4:00 and 7:00 h to determine the concentrations of plasma glucose, insulin, noradrenaline (NA) and adrenomedullin, markers of subclinical inflammation, coagulation and fibrinolysis variables and platelet function. Overnight holter ECG recording was performed for analysis of heart rate variability (HRV). Secondly, we studied 87 overweight hypertensive women with natural menopause. They were randomised to use a central sympatholytic agent, moxonidine (0.3mg twice daily), the β-blocking agent atenolol (50 mg once daily+blacebo once daily) for 8 weeks. Inflammatory markers and adiponectin were analysed at the beginning and after 8 weeks. Activation of the SNS (increase in NA, decreased HRV) was seen in pregnant vs. non-pregnant women, but no difference existed between GDM and normal pregnancy. However, modulation (internal rhythm) of HRV was attenuated in GDM. Insulin and inflammatory cytokine levels were comparable in all pregnant women but nocturnal variation of concentrations of C-reactive protein, serum amyloid A and insulin were reduced in GDM. Levels of coagulation factor VIII were lower in GDM compared with normal pregnancy, whereas no other differences were seen in coagulation and fibrinolysis markers. No significant associations were seen between NA and the studied parameters. In the study of postmenopausal women, moxonidine treatment was associated with favourable changes in the inflammatory profile, seen as a decrease in TNFα concentrations (increase in atenolol group) and preservation of adiponectin levels (decrease in atenolol group). In conclusion, our results did not support our hypotheses of increased SNS activity in GDM or a marked association between NA and inflammatory and coagulation markers. Reduced biological variation of HRV, insulin and inflammatory cytokines suggests disturbance of autonomic and hormonal regulatory mechanisms in GDM. This is a novel finding. Further understanding of the regulatory mechanisms could allow earlier detection of risk women and the possibility of prevention. In addition, our results support consideration of the SNS as one of the therapeutic targets in the battle against metabolic diseases, including T2D and CVD.