26 resultados para TUMOR INVASION

em Helda - Digital Repository of University of Helsinki


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Proteolytic enzymes, such as matrix metalloproteinases (MMP), are associated to the progression of several cancers. They degrade extracellular components, which helps tumors to expand and cancer cells to escape from the primary site. Of all MMPs, gelatinases (MMP-2 and -9) and membrane type-1 matrix metalloproteinase (MT1-MMP, MMP-14), in particular, are often associated to more aggressive types of head and neck carcinomas as well as to a poorer outcome in patient survival. Although therapies during the last decades have advanced, the mortality of the disease is still rather high and adjuvant therapies are searched for continuously. MMP-9 and MT1-MMP are also involved in neo-angiogenesis, which is necessary for tumor expansion. For this reason, we have identified synthetic peptides-targeting gelatinases and MT1-MMP, and have also evaluated their anticancer effects in vitro and in vivo. Antigelatinolytic peptides effectively inhibited tongue-carcinoma cell invasion and reduced the growth of xenografted tumors. In tumor samples of mice that were treated with antigelatinolytic peptides, the micro-vessel density was significantly reduced. We also identified a novel MT1-MMP targeting peptide and demonstrated that it exerted anticancer effects against several malignant cell lines in vitro. The effects of MT1-MMP inhibition on tongue-squamous cell carcinomas were evaluated by using xenograft tumors, which it effectively inhibited. Tranexamic acid was also demonstrated to inhibit tongue-squamous cell carcinoma invasion, most probably due to its ability to prevent the plasmin-mediated activation of proMMP-9. Leukocyte β2 integrins are another interesting option when evaluating targets for the therapeutic intervention of inflammatory conditions or malignancies of hematopoietic origin, since β2 integrins are expressed mainly by leukocytes. We identified a novel technique for screening small-molecule libraries against β2 integrins, and by using this technique we identified a novel αMβ2 integrin-binding chemical (IMB-10). IMB-10 significantly enhances leukocyte adhesion and inhibits their motility. We also demonstrated that IMB-10 can be used to inhibit inflammation and lymphoma growth in vivo. Interestingly, IMB-10 also reduced leukocyte tumor infiltration and inhibited tumor invasion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Epilysin (MMP-28) is the most recently identified member of the matrix metalloproteinase (MMP) family of extracellular proteases. Together these enzymes are capable of degrading almost all components of the extracellular matrix (ECM) and are thus involved in important biological processes such as development, wound healing and immune functions, but also in pathological processes such as tumor invasion, metastasis and arthritis. MMPs do not act solely by degrading the ECM. They also regulate cell behavior by releasing growth factors and biologically active peptides from the ECM, by modulating cell surface receptors and adhesion molecules and by regulating the activity of many important mediators in inflammatory pathways. The aim of this study was to define the unique role of epilysin within the MMP-family, to elucidate how and when it is expressed and how its catalytic activity is regulated. To gain information on its essential functions and substrates, the specific aim was to characterize how epilysin affects the phenotype of epithelial cells, where it is biologically expressed. During the course of the study we found that the epilysin promoter contains a well conserved GT-box that is essential for the basic expression of this gene. Transcription factors Sp1 and Sp3 bind this sequence and could hence regulate both the basic and cell type and differentiation stage specific expression of epilysin. We cloned mouse epilysin cDNA and found that epilysin is well conserved between human and mouse genomes and that epilysin is glycosylated and activated by furin. Similarly to in human tissues, epilysin is normally expressed in a number of mouse tissues. The expression pattern differs from most other MMPs, which are expressed only in response to injury or inflammation and in pathological processes like cancer. These findings implicate that epilysin could be involved in tissue homeostasis, perhaps fine-tuning the phenotype of epithelial cells according to signals from the ECM. In view of these results, it was unexpected to find that epilysin can induce a stable epithelial to mesenchymal transition (EMT) when overexpressed in epithelial lung carcinoma cells. Transforming growth factor b (TGF-b) was recognized as a crucial mediator of this process, which was characterized by the loss of E-cadherin mediated cell-cell adhesion, elevated expression of gelatinase B and MT1-MMP and increased cell migration and invasion into collagen I gels. We also observed that epilysin is bound to the surface of epithelial cells and that this interaction is lost upon cell transformation and is susceptible to degradation by membrane type-1-MMP (MT1-MMP). The wide expression of epilysin under physiological conditions implicates that its effects on epithelial cell phenotype in vivo are not as dramatic as seen in our in vitro cell system. Nevertheless, current results indicate a possible interaction between epilysin and TGF-b also under physiological circumstances, where epilysin activity may not induce EMT but, instead, trigger less permanent changes in TGF-b signaling and cell motility. Epilysin may thus play an important role in TGF-b regulated events such as wound healing and inflammation, processes where involvement of epilysin has been indicated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neurofibromatosis 2 (NF2) is a dominantly inherited disorder, which predisposes to multiple tumours of the nervous system, typically schwannomas and meningiomas. Biallelic inactivation of the NF2 gene occurs both in sporadic and NF2-related schwannomas and in most meningiomas. The NF2 gene product merlin (or schwannomin) is structurally related to the ERM proteins, ezrin, radixin and moesin, which act as molecular linkers between the actin cytoskeleton and the plasma membrane. Merlin is a tumor suppressor that participates in cell cycle regulation. Merlin s phosphorylation status appears to be associated with its tumour suppressor activity, i.e. non-phosphorylated merlin functions as a tumour suppressor, whereas protein phosphorylation results in loss of functional activity. This thesis study was initiated to investigate merlin s role as a tumor suppressor and growth inhibitor. These studies show, that like many other tumor suppressors, also merlin is targeted to the nucleus at some stages of the cell cycle. Merlin s nuclear localization is regulated by cell cycle phase, contact inhibition and adhesion. In addition, a potential nuclear binding partner for merlin was identified, Human Enhancer of Invasion 10 (HEI10), a cyclin B interacting protein. Many tumor suppressors interact with microtubules and this thesis work shows that also merlin colocalizes with microtubules in mitotic structures. Merlin binds microtubules directly, and increases their polymerization in vitro and in vivo. In addition, primary mouse Schwann cells lacking merlin displays disturbed microtubule cytoskeleton. Fourth part of this thesis work began from the notion that PKA phosphorylates an unidentified site from the merlin N-terminus. Our studies show that serine 10 is a target for PKA and modulation of this residue regulates cytoskeletal organization, lamellipodia formation and cell migration. In summary, this thesis work shows that merlin s role is much more versatile than previously thought. It has a yet unidentified role in the nucleus and it participates in the regulation of both microtubules and the actin cytoskeleton. These studies have led to a better understanding of this enigmatic tumor suppressor, which eventually will aid in the design of specific drugs for the NF2 disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mitochondrion is an organelle of outmost importance, and the mitochondrial network performs an array of functions that go well beyond ATP synthesis. Defects in mitochondrial performance lead to diseases, often affecting nervous system and muscle. Although many of these mitochondrial diseases have been linked to defects in specific genes, the molecular mechanisms underlying the pathologies remain unclear. The work in this thesis aims to determine how defects in mitochondria are communicated within - and interpreted by - the cells, and how this contributes to disease phenotypes. Fumarate hydratase (FH) is an enzyme of the citrate cycle. Recessive defects in FH lead to infantile mitochondrial encephalopathies, while dominant mutations predispose to tumor formation. Defects in succinate dehydrogenase (SDH), the enzyme that precedes FH in the citrate cycle, have also been described. Mutations in SDH subunits SDHB, SDHC and SDHD are associated with tumor predisposition, while mutations in SDHA lead to a characteristic mitochondrial encephalopathy of childhood. Thus, the citrate cycle, via FH and SDH, seems to have essential roles in mitochondrial function, as well as in the regulation of processes such as cell proliferation, differentiation or death. Tumor predisposition is not a typical feature of mitochondrial energy deficiency diseases. However, defects in citrate cycle enzymes also affect mitochondrial energy metabolism. It is therefore necessary to distinguish what is specific for defects in citrate cycle, and thus possibly associated with the tumor phenotype, from the generic consequences of defects in mitochondrial aerobic metabolism. We used primary fibroblasts from patients with recessive FH defects to study the cellular consequences of FH-deficiency (FH-). Similarly to the tumors observed in FH- patients, these fibroblasts have very low FH activity. The use of primary cells has the advantage that they are diploid, in contrast with the aneuploid tumor cells, thereby enabling the study of the early consequences of FH- in diploid background, before tumorigenesis and aneuploidy. To distinguish the specific consequences of FH- from typical consequences of defects in mitochondrial aerobic metabolism, we used primary fibroblasts from patients with MELAS (mitochondrial encephalopathy with lactic acidosis and stroke-like episodes) and from patients with NARP (neuropathy, ataxia and retinitis pigmentosa). These diseases also affect mitochondrial aerobic metabolism but are not known to predispose to tumor formation. To study in vivo the systemic consequences of defects in mitochondrial aerobic metabolism, we used a transgenic mouse model of late-onset mitochondrial myopathy. The mouse contains a transgene with an in-frame duplication of a segment of Twinkle, the mitochondrial replicative helicase, whose defects underlie the human disease progressive external ophthalmoplegia. This mouse model replicates the phenotype in the patients, particularly neuronal degeneration, mitochondrial myopathy, and subtle decrease of respiratory chain activity associated with mtDNA deletions. Due to the accumulation of mtDNA deletions, the mouse was named deletor. We first studied the consequences of FH- and of respiratory chain defects for energy metabolism in primary fibroblasts. To further characterize the effects of FH- and respiratory chain malfunction in primary fibroblasts at transcriptional level, we used expression microarrays. In order to understand the in vivo consequences of respiratory chain defects in vivo, we also studied the transcriptional consequences of Twinkle defects in deletor mice skeletal muscle, cerebellum and hippocampus. Fumarate accumulated in the FH- homozygous cells, but not in the compound heterozygous lines. However, virtually all FH- lines lacked cytoplasmic FH. Induction of glycolysis was common to FH-, MELAS and NARP fibroblasts. In deletor muscle glycolysis seemed to be upregulated. This was in contrast with deletor cerebellum and hippocampus, where mitochondrial biogenesis was in progress. Despite sharing a glycolytic pattern in energy metabolism, FH- and respiratory chain defects led to opposite consequences in redox environment. FH- was associated with reduced redox environment, while MELAS and NARP displayed evidences of oxidative stress. The deletor cerebellum had transcriptional induction of antioxidant defenses, suggesting increased production of reactive oxygen species. Since the fibroblasts do not represent the tissues where the tumors appear in FH- patients, we compared the fibroblast array data with the data from FH- leiomyomas and normal myometrium. This allowed the determination of the pathways and networks affected by FH-deficiency in primary cells that are also relevant for myoma formation. A key pathway regulating smooth muscle differentiation, SRF (serum response factor)-FOS-JUNB, was found to be downregulated in FH- cells and in myomas. While in the deletor mouse many pathways were affected in a tissue-specific basis, like FGF21 induction in the deletor muscle, others were systemic, such as the downregulation of ALAS2-linked heme synthesis in all deletor tissues analyzed. However, interestingly, even a tissue-specific response of FGF21 excretion could elicit a global starvation response. The work presented in this thesis has contributed to a better understanding of mitochondrial stress signalling and of pathways interpreting and transducing it to human pathology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kasvainten, ajatellaan syntyvän yksittäisen solun perimän mutaatioista, jonka seurauksena tuon solun kasvu häiriintyy. Ruoansulatuskanavan polyyppien syntyä käytetään usein mallina siitä, miten nämä epiteelisoluun kerääntyvät mutaatiot aiheuttavat asteittain pahenevan kasvuhäiriön. Peutz–Jeghersin oireyhtymä (PJS) on perinnöllinen polypoosisyndrooma, jossa oireita aiheuttavat erityisesti maha-suolikanavan hamartomatoottiset polyypit. Noin puolella PJS potilaista havaitaan mutaatioita LKB1 kasvunrajoite geenissä. Hiirille joilta toinen Lkb1 alleeli on poistettu (Lkb1+/-) kehittyy PJS-tyypin maha-suolikanavan polyyppeja, joissa on epiteelin liikakasvun lisäksi merkittävä sileälihaskomponentti, aivan kuten PJS polyypeissa. Kuten myös muissa ruoansulatuskanavan polypooseissa, sekä PJS että hiirten polyypeissa Cyclo-oxygenaasi-2:n (COX-2) määrä on usein kohonnut. PJS-polyyppien kehittymisen molekulaarinen mekanismi on kuitenkin selvittämättä. Koska vain osa PJS potilaista kantaa LKB1 mutaatioita, mutaatiot jossakin toisessa lokuksessa saattaisivat selittää osan PJS tapauksista. Jotta PJS:n geneettinen tausta selviäisi, seulottiin kolmen LKB1:n kanssa interaktoivan proteiinin (BRG1, STRADα ja MO25α) geenit PJS potilaista joilla ei ole havaittu LKB1 mutaatioita. Yhdessäkään tutkituista geeneistä ei havaittu tautia aiheuttavia mutaatioita. Näiden kolmen geenin pois sulkeminen, ja uusien menetelmien ansiosta kasvanut havaittujen Lkb1 mutaatioden määrä viittaavat LKB1:n olevan useimpien PJS tapausten taustalla. COX-2:n estäjien käyttö on tehokkaasti vähentänyt polyyppien määrää familiaarisessa adenomatoottisessa polypoosissa. Tästä johtuen COX-2:n eston tehokkuutta tutkittiin PJS polypoosissa. PJS-tyypin polypoosin havaittin pienenevän merkittävästi Lkb1+/- hiirissä, joilta oli lisäksi poistettu toinen tai molemmat COX-2:n alleeleista. Lisäksi farmakologinen COX-2:n esto Celecoxib:lla vähensi polypoosia tehokkaasti. Näin ollen COX-2:n eston tehokkuutta tutkittiin seuraavaksi PJS potilaissa. Kuuden kuukauden Celecoxib hoidon jälkeen polypoosin havaittiin vähentyneen merkittävästi osalla potilaista (2/6). Nämä tulokset osoittavat COX-2:n roolin PJS-polyyppien kehityksessä, ja viittaavat COX-2:n eston vähentävän polypoosia. Kasvunrajoitegeenin klassisen määritelmän mukaan kasvaimen kehitys vaatii perinnöllisen mutaation lisäksi geenin toisenkin alleelin mutaation, mutta PJS-polyyppien häiriintyneestä epiteelistä ei kuitenkaan systemaattisesti löydy toista LKB1:n mutaatiota. Havainto johti tutkimukseen, jossa selvitettiin voisiko LKB1:n kasvun rajoitus välittyäkin epäsuorasti tukikudokseksi ajatelluista sileälihassoluista. Tätä tutkittiin kehittämällä poistogeeninen hiirimalli jossa Lkb1 on mutatoitunut vain sileälihassoluissa. Näille hiirille kehittyi polyyppeja, jotka ovat kaikin tavoin PJS-polyyppien kaltaisia. Lkb1:n menettäneiden solujen havaittiin tuottavan vähemmän transformoivaa kasvutekijä beetaa (TGFß), joka aiheutti solujen välisen viestinnän heikentymisen ja mahdollisesti viereisten epiteelisolujen liikakasvun. Vastaava häiriö havaittiin myös PJS-potilaiden polyypeissa, mikä viittaa siihen, että potilaillakin sileälihassolujen häiriö on polyyppien taustalla. Havainto suuntaa täten hoitokohteiden etsintää ja osoittaa että LKB1 toimii kasvunrajoittajana epätyypillisellä tavalla pitäen naapurisolujen kasvun kurissa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this thesis was to compare the degradation of human oral epithelial proteins by proteinases of different Candida yeast species. We focused on proteins associated with Candida invasion in the cell-to-cell junction, the basement membrane zone, the extracellular matrix, and local tissue inflammatory regulators. Another main objective was to evaluate the effect of the yeast/hyphal transition and pH on the degradative capability of Candida. The enzymatic activity of the Candida proteinases was verified by gelatin zymography. Laminins-332 (Lm-322) and -511(Lm-511) produced by human oral keratinocytes were gathered from the growth media, and E-cadherin (E-Cad) was isolated from the cell membrane of the keratinocytes by immunoprecipitation. The proteins were incubated with Candida cells and cell-free fractions, and degradation was detected by fluorography. Fibronectin degradation was visualised by sodium dodecylsulphate polyacrylamide gel electrophoresis (SDS-PAGE). Matrix metalloproteinase-9 (MMP-9) activation and tissue inhibitor of metalloproteinase-1 (TIMP-1) fragmentation was detected by using the Western blot and enhanced chemoluminescence (ECL) techniques. Residual activity of TIMP-1 was evaluated by a casein degradation assay. A fluorimetric assay was used to detect and compare Candida proteinase activities with MMP-9. These studies showed that the ability of the different Candida yeast species to degrade human Lm-332, fibronectin, and E-Cad vary from strain to strain and that this degradation is pH-dependent. This indicates that local acidic pH in tissue may play a role in tissue destruction by activating Candida proteinases and aid invasion of Candida into deeper tissue. A potential correlation exists between the morphological form of the yeasts and the degradative ability; the C. albicans yeast form seems to be related to superficial infections, and hyphal forms can apparently invade deeper tissues between the epithelial cells by degradation of E-Cad. Basement membrane degradation is possible, especially in the junctional epithelium, which contains only Lm-332 as a structural component. Local tissue host inflammatory mediators, such as MMP-9, were activated, and TIMP-1 was degraded by certain Candida species, thus indicating the possibility of a weakened host tissue defence mechanism in vivo.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the treatment of most cancers has improved steadily, only few metastatic solid tumors can be cured. Despite responses, refractory clones often emerge and the disease becomes refractory to available treatment modalities. Furthermore, resistance factors are shared between different treatment regimens and therefore loss of response typically occurs rapidly, and there is a tendency for cross-resistance between agents. Therefore, new agents with novel mechanisms of action and lacking cross-resistance to currently available approaches are needed. Modified oncolytic adenoviruses, featuring cancer-celective cell lysis and spread, constitute an interesting drug platform towards the goals of tumor specificity and the implementation of potent multimodal treatment regimens. In this work, we demonstrate the applicability of capsid-modified, transcriptionally targeted oncolytic adenoviruses in targeting gastric, pancreatic and breast cancer. A variety of capsid modified adenoviruses were tested for transductional specificity first in gastric and pancreatic cancer cells and patient tissues and then in mice. Then, oncolytic viruses featuring the same capsid modifications were tested to confirm that successful transductional targeting translates into enhanced oncolytic potential. Capsid modified oncolytic viruses also prolonged the survival of tumor bearing orthotopic models of gastric and pancreatic cancer. Taken together, oncolytic adenoviral gene therapy could be a potent drug for gastric and pancreatic cancer, and its specificity, potency and safety can be modulated by means of capsid modification. We also characterized a new intraperitoneal virus delivery method in benefit for the persistence of gene delivery to intraperitoneal gastric and pancreatic cancer tumors. With a silica implant a steady and sustained virus release to the vicinity of the tumor improved the survival of the orthotopic tumor bearing mice. Furthermore, silica gel-based virus delivery lowered the toxicity mediating proimflammatory cytokine response and production of total and anti-adenovirus neutralizing antibodies (NAbs). On the other hand, silica shielded the virus against pre-excisting NAbs, resulting in a more favourable biodistribution in the preimmunized mice. The silica implant might therefore be of interest in treating intraperitoneally disseminated disease. Cancer stem cells are thought to be resistant to conventional cancer drugs and might play an important role in cancer relapse and the formation of metastasis. Therefore, we examined if transcriptionally modified oncolytic adenoviruses are able to kill these cells. Complete eradication of CD44+CD24-/low putative breast cancer stem cells was seen in vitro, and significant antitumor activity was detected in CD44+CD24-/low –derived tumor bearing mice. Thus, genetically engineered oncolytic adenoviruses have potential in destroying cancer initiating cells, which may have relevance for the elimination of cancer stem cells in humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Functional loss of tumor suppressor protein p53 is a common feature in diverse human cancers. The ability of this protein to sense cellular damage and halt the progression of the cell cycle or direct the cells to apoptosis is essential in preventing tumorigenesis. Tumors having wild-type p53 also respond better to current chemotherapies. The loss of p53 function may arise from TP53 mutations or dysregulation of factors controlling its levels and activity. Probably the most significant inhibitor of p53 function is Mdm2, a protein mediating its degradation and inactivation. Clearly, the maintenance of a strictly controlled p53-Mdm2 route is of great importance in preventing neoplastic transformation. Moreover, impairing Mdm2 function could be a nongenotoxic way to increase p53 levels and activity. Understanding the precise molecular mechanisms behind p53-Mdm2 relationship is thus essential from a therapeutic point of view. The aim of this thesis study was to discover factors affecting the negative regulation of p53 by Mdm2, causing activation of p53 in stressed cells. As a model of cellular damage, we used UVC radiation, inducing a complex cellular stress pathway. Exposure to UVC, as well as to several chemotherapeutic drugs, causes robust transcriptional stress in the cells and leads to activation of p53. By using this model of cellular stress, our goal was to understand how and by which proteins p53 is regulated. Furthermore, we wanted to address whether these pathways affecting p53 function could be altered in human cancers. In the study, two different p53 pathway proteins, nucleophosmin (NPM) and promyelocytic leukemia protein (PML), were found to participate in the p53 stress response following UV stress. Subcellular translocations of these proteins were discovered rapidly after exposure to UV. The alterations in the cellular localizations were connected to transient interactions with p53 and Mdm2, implicating their significance in the regulation of p53 stress response. NPM was shown to control Mdm2-p53 interface and mediate p53 stabilization by blocking the ability of Mdm2 to promote p53 degradation. Furthermore, NPM mediated p53 stabilization upon viral insult. We further detected a connection between cellular pathways of NPM and PML, as PML was found to associate with NPM in UV-radiated cells. The observed temporal UV-induced interactions strongly imply existence of a multiprotein complex participating in the p53 response. In addition, PML controlled the UV response of NPM, its localization and complex formation with chromatin associated factors. The relevance of the UV-promoted interactions was demonstrated in studies in a human leukemia cell line, being under abnormal transcriptional repression due to expression of oncogenic PML-RARa fusion protein. Reversing the leukemic phenotype with a therapeutically significant drug was associated with similar complex formation between p53 and its partners as following UV. In conclusion, this thesis study identifies novel p53 pathway interactions associated with the recovery from UV-promoted as well as oncogenic transcriptional repression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biological invasions are considered as one of the greatest threats to biodiversity, as they may lead to disruption and homogenization of natural communities, and in the worst case, to native species extinctions. The introduction of gene modified organisms (GMOs) to agricultural, fisheries and forestry practices brings them into contact with natural populations. GMOs may appear as new invasive species if they are able to (1) invade into natural habitats or (2) hybridize with their wild relatives. The benefits of GMOs, such as increased yield or decreased use of insecticides or herbicides in cultivation, may thus be reduced due the potential risks they may cause. A careful ecological risk analysis therefore has to precede any responsible GMO introduction. In this thesis I study ecological invasion in relation to GMOs, and what kind of consequences invasion may have in natural populations. A set of theoretical models that combine life-history evolution, population dynamics, and population genetics were developed for the hazard identification part of ecological risks assessment of GMOs. In addition, the potential benefits of GMOs in management of an invasive pest were analyzed. In the first study I showed that a population that is fluctuating due to scramble-type density dependence (due to, e.g., nutrient competition in plants) may be invaded by a population that is relatively more limited by a resource (e.g., light in plants) that is a cause of contest-type density dependence. This result emphasises the higher risk of invasion in unstable environments. The next two studies focused on escape of a growth hormone (GH) transgenic fish into a natural population. The results showed that previous models may have given too pessimistic a view of the so called Trojan gene -effect, where the invading genotype is harmful for the population as a whole. The previously suggested population extinctions did not occur in my studies, since the changes in mating preferences caused by the GH-fish were be ameliorated by decreased level of competition. The GH-invaders may also have to exceed a threshold density before invasion can be successful. I also showed that the prevalence of mature parr (aka. sneaker) strategy among GH-fish may have clear effect on invasion outcome. The fourth study assessed the risks and developed methods against the invasion of the Colorado Potato Beetle (CPB, Leptinotarsa decemlineata). I showed that the eradication of CPB is most important for the prevention of their establishment, but the cultivation of transgenic Bt-potato could also be effective. In general, my results emphasise that invasion of transgenic species or genotypes to be possible under certain realistic conditions and resulting in competitive exclusion, population decline through outbreeding depression and genotypic displacement of native species. Ecological risk assessment should regard the decline and displacement of the wild genotype by an introduced one as a consequence that is as serious as the population extinction. It will also be crucial to take into account different kinds of behavioural differences among species when assessing the possible hazards that GMOs may cause if escaped. The benefits found of GMO crops effectiveness in pest management may also be too optimistic since CPB may evolve resistance to Bt-toxin. The models in this thesis could be further applied in case specific risk assessment of GMOs by supplementing them with detailed data of the species biology, the effect of the transgene introduced to the species, and also the characteristics of the populations or the environments in the risk of being invaded.