64 resultados para Soil-borne fungi

em Helda - Digital Repository of University of Helsinki


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rhizoctonia spp. are ubiquitous soil inhabiting fungi that enter into pathogenic or symbiotic associations with plants. In general Rhizoctonia spp. are regarded as plant pathogenic fungi and many cause root rot and other plant diseases which results in considerable economic losses both in agriculture and forestry. Many Rhizoctonia strains enter into symbiotic mycorrhizal associations with orchids and some hypovirulent strains are promising biocontrol candidates in preventing host plant infection by pathogenic Rhizoctonia strains. This work focuses on uni- and binucleate Rhizoctonia (respectively UNR and BNR) strains belonging to the teleomorphic genus Ceratobasidium, but multinucleate Rhizoctonia (MNR) belonging to teleomorphic genus Thanatephorus and ectomycorrhizal fungal species, such as Suillus bovinus, were also included in DNA probe development work. Strain specific probes were developed to target rDNA ITS (internal transcribed spacer) sequences (ITS1, 5.8S and ITS2) and applied in Southern dot blot and liquid hybridization assays. Liquid hybridization was more sensitive and the size of the hybridized PCR products could be detected simultaneously, but the advantage in Southern hybridization was that sample DNA could be used without additional PCR amplification. The impacts of four Finnish BNR Ceratorhiza sp. strains 251, 266, 268 and 269 were investigated on Scot pine (Pinus sylvestris) seedling growth, and the infection biology and infection levels were microscopically examined following tryphan blue staining of infected roots. All BNR strains enhanced early seedling growth and affected the root architecture, while the infection levels remained low. The fungal infection was restricted to the outer cortical regions of long roots and typical monilioid cells detected with strain 268. The interactions of pathogenic UNR Ceratobasidium bicorne strain 1983-111/1N, and endophytic BNR Ceratorhiza sp. strain 268 were studied in single or dual inoculated Scots pine roots. The fungal infection levels and host defence-gene activity of nine transcripts [phenylalanine ammonia lyase (pal1), silbene synthase (STS), chalcone synthase (CHS), short-root specific peroxidase (Psyp1), antimicrobial peptide gene (Sp-AMP), rapidly elicited defence-related gene (PsACRE), germin-like protein (PsGER1), CuZn- superoxide dismutase (SOD), and dehydrin-like protein (dhy-like)] were measured from differentially treated and un-treated control roots by quantitative real time PCR (qRT-PCR). The infection level of pathogenic UNR was restricted in BNR- pre-inoculated Scots pine roots, while UNR was more competitive in simultaneous dual infection. The STS transcript was highly up-regulated in all treated roots, while CHS, pal1, and Psyp1 transcripts were more moderately activated. No significant activity of Sp-AMP, PsACRE, PsGER1, SOD, or dhy-like transcripts were detected compared to control roots. The integrated experiments presented, provide tools to assist in the future detection of these fungi in the environment and to understand the host infection biology and defence, and relationships between these interacting fungi in roots and soils. This study further confirms the complexity of the Rhizoctonia group both phylogenetically and in their infection biology and plant host specificity. The knowledge obtained could be applied in integrated forestry nursery management programmes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tieteellinen tiivistelmä Common scab is one of the most important soil-borne diseases of potato (Solanum tuberosum L.) in many potato production areas. It is caused by a number of Streptomyces species, in Finland the causal agents are Streptomyces scabies (Thaxter) Lambert & Loria and S. turgidiscabies Takeuchi. The scab-causing Streptomyces spp. are well-adapted, successful plant pathogens that survive in soil also as saprophytes. Control of these pathogens has proved to be difficult. Most of the methods used to manage potato common scab are aimed at controlling S. scabies, the most common of the scab-causing pathogens. The studies in this thesis investigated S. scabies and S. turgidiscabies as causal organisms of common scab and explored new approaches for control of common scab that would be effective against both species. S. scabies and S. turgidiscabies are known to co-occur in the same fields and in the same tuber lesions in Finland. The present study showed that both these pathogens cause similar symptoms on potato tubers, and the types of symptoms varied depending on cultivar rather than the pathogen species. Pathogenic strains of S. turgidiscabies were antagonistic to S. scabies in vitro indicating that these two species may be competing for the same ecological niche. In addition, strains of S. turgidiscabies were highly virulent in potato and they tolerated lower pH than those of S. scabies. Taken together these results suggest that S. turgidiscabies has become a major problem in potato production in Finland. The bacterial phytotoxins, thaxtomins, are produced by the scab-causing Streptomyces spp. and are essential for the induction of scab symptoms. In this study, thaxtomins were produced in vitro and four thaxtomin compounds isolated and characterized. All four thaxtomins induced similar symptoms of reduced root and shoot growth, root swelling or necrosis on micro-propagated potato seedlings. The main phytotoxin, thaxtomin A, was used as a selective agent in a bioassay in vitro to screen F1 potato progeny from a single cross. Tolerance to thaxtomin A in vitro and scab resistance in the field were correlated indicating that the in vitro bioassay could be used in the early stages of a resistance breeding program to discard scab-susceptible genotypes and elevate the overall levels of common scab resistance in potato breeding populations. The potential for biological control of S. scabies and S. turgidiscabies using a non-pathogenic Streptomyces strain (346) isolated from a scab lesion and S. griseoviridis strain (K61) from a commercially available biocontrol product was studied. Both strains showed antagonistic activity against S. scabies and S. turgidiscabies in vitro and suppressed the development of common scab disease caused by S. turgidiscabies in the glasshouse. Furthermore, strain 346 reduced the incidence of S. turgidiscabies in scab lesions on potato tubers in the field. These results demonstrated for the first time the potential for biological control of S. turgidiscabies in the glasshouse and under field conditions and may be applied to enhance control of common scab in the future.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

B. cereus is a gram-positive bacterium that possesses two different forms of life:the large, rod-shaped cells (ca. 0.002 mm by 0.004 mm) that are able to propagate and the small (0.001 mm), oval shaped spores. The spores can survive in almost any environment for up to centuries without nourishment or water. They are insensitive towards most agents that normally kill bacteria: heating up to several hours at 90 ºC, radiation, disinfectants and extreme alkaline (≥ pH 13) and acid (≤ pH 1) environment. The spores are highly hydrophobic and therefore make them tend to stick to all kinds of surfaces, steel, plastics and live cells. In favorable conditions the spores of B. cereus may germinate into vegetative cells capable of producing food poisoning toxins. The toxins can be heat-labile protein formed after ingestion of the contaminated food, inside the gastrointestinal tract (diarrhoeal toxins), or heat stable peptides formed in the food (emesis causing toxin, cereulide). Cereulide cannot be inactivated in foods by cooking or any other procedure applicable on food. Cereulide in consumed food causes serious illness in human, even fatalities. In this thesis, B. cereus strains originating from different kinds of foods and environments and 8 different countries were inspected for their capability of forming cereulide. Of the 1041 isolates from soil, animal feed, water, air, used bedding, grass, dung and equipment only 1.2 % were capable of producing cereulide, whereas of the 144 isolates originating from foods 24 % were cereulide producers. Cereulide was detected by two methods: by its toxicity towards mammalian cells (sperm assay) and by its peculiar chemical structure using liquid-chromatograph-mass spectrometry equipment. B. cereus is known as one of the most frequent bacteria occurring in food. Most foods contain more than one kind of B. cereus. When randomly selected 100 isolates of B. cereus from commercial infant foods (dry formulas) were tested, 11% of these produced cereulide. Considering a frequent content of 103 to 104 cfu (colony forming units) of B. cereus per gram of infant food formula (dry), it appears likely that most servings (200 ml, 30 g of the powder reconstituted with water) may contain cereulide producers. When a reconstituted infant formula was inoculated with >105 cfu of cereulide producing B. cereus per ml and left at room temperature, cereulide accumulated to food poisoning levels (> 0.1 mg of cereulide per serving) within 24 hours. Paradoxically, the amount of cereulide (per g of food) increased 10 to 50 fold when the food was diluted 4 - 15 fold with water. The amount of the produced cereulide strongly depended on the composition of the formula: most toxin was formed in formulas with cereals mixed with milk, and least toxin in formulas based on milk only. In spite of the aggressive cleaning practices executed by the modern dairy industry, certain genotypes of B. cereus appear to colonise the silos tanks. In this thesis four strategies to explain their survival of their spores in dairy silos were identified. First, high survival (log 15 min kill ≤ 1.5) in the hot alkaline (pH >13) wash liquid, used at the dairies for cleaning-in-place. Second, efficient adherence of the spores to stainless steel from cold water. Third, a cereulide producing group with spores characterized by slow germination in rich medium and well preserved viability when exposed to heating at 90 ºC. Fourth, spores capable of germinating at 8 ºC and possessing the psychrotolerance gene, cspA. There were indications that spores highly resistant to hot 1% sodium hydroxide may be effectively inactivated by hot 0.9% nitric acid. Eight out of the 14 dairy silo tank isolates possessing hot alkali resistant spores were capable of germinating and forming biofilm in whole milk, not previously reported for B. cereus. In this thesis it was shown that cereulide producing B. cereus was capable of inhibiting the growth of cereulide non-producing B. cereus occurring in the same food. This phenomenon, called antagonism, has long been known to exist between B. cereus and other microbial species, e.g. various species of Bacillus, gram-negative bacteria and plant pathogenic fungi. In this thesis intra-species antagonism of B. cereus was shown for the first time. This brother-killing did not depend on the cereulide molecule, also some of the cereulide non-producers were potent antagonists. Interestingly, the antagonistic clades were most frequently found in isolates from food implicated with human illness. The antagonistic property was therefore proposed in this thesis as a novel virulence factor that increases the human morbidity of the species B. cereus, in particular of the cereulide producers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Puu, ruohokasvit ja näistä tehdyt tuotteet kuten mekaanisesta massasta valmistettu sanomalehtipaperi sisältävät ligniiniä, joka hajoaa yleensä hyvin hitaasti luonnossa. Valkolahosienet hajottavat ligniiniä tehokkaimmin, ja koska niiden tuottamat entsyymit hajottavat myös muita vaikeasti hajoavia yhdisteitä, voidaan valkolahosienten avulla mahdollisesti puhdistaa saastuneita maita. Tässä työssä haluttiin selvittää, säilyttävätkö valkolahosienet (Abortiporus biennis, Bjerkandera adusta, Dichomitus squalens, Phanerochaete chrysosporium, Phanerochaete sordida, Phlebia radiata, Pleurotus ostreatus, Trametes hirsuta ja Trametes versicolor) aktiivisuutensa ja kasvavatko ne maassa. Aktiivisuutta mitattiin seuraamalla sienten synteettisen ligniinin (14C-DHP) hajotuskykyä. T. versicolor (silkkivyökääpä) osoittautui tehokkaimmaksi ligniinin hajottajaksi ja sen pentakloorifenolin (PCP) hajotuskykyä tutkittiin erillisessä kokeessa. Entiset tai pitkään käytössä olleet saha-alueet ovat yhä saastuneet puun käsittelyaineista peräisin olevilla kloorifenoleilla. Biohajoavien muovien kehitystyö sekä kompostoinnin yleistyminen jätteiden käsittelymenetelmänä ovat luoneet tarpeen materiaalien biohajoavuuden määrittämiseen. Euroopan standardisoimisjärjestön (CEN) kontrolloidussa kompostitestissä biohajoavuus määritetään materiaalin hajoamisen aikana muodostuvan hiilidioksidin perusteella. Hiilidioksidin tuotto mitataan sekä näytettä sisältävästä kompostista että kompostista ilman näytettä, ja tällöin oletetaan, että kompostin orgaaninen aines molemmissa komposteissa (tausta) tuottaa yhtä paljon hiilidioksidia. Testin puutteeksi saattaa osoittautua kompostissa tai maassa esiintyvä "priming effect". Tällä tarkoitetaan materiaalin lisäämisen jälkeen esiintyvää epänormaalin suurita tai pientä hiilidioksidin muodostusta, minkä seurauksena testin tulosksena saatava biohajoavuus on virheellinen. Ligniinin hajotessa muodostuu enemmän humusta kuin hiilidioksidia, koska ligniini on humuksen tärkein lähtöaine. Näin ollen ligniiniä sisältävät paperituotteet saattavat testin mukaan vaikuttaa biologisesti hajoamattomilta. Valkolahosienet hajottivat 4-23% ligniinistä hiilidioksidiksi ja T. versicolor 29% PCP:sta. Kompostissa ligniini hajosi hiilidioksidiksi 58°C:ssa huomattavasti vähemmän (8%) kuin lämpötiloissa 35°C ja 50°C (23-24%). Kompostin todennäköisesti tärkeimpien ligniinin hajottajien, termofiilisten sienten, tyypillinen optimilämpötila on 45°C, eivätkä ne ole enää aktiivisia 58°C:ssa. Sekä maassa että kompostissa ligniini sitoutui kuitenkin suurimmaksi osaksi humukseen. Valkolahosienet hajottivat sekä humukseen sitoutunutta ligniiniä että PCP:ia, mutta kompostin sekapopulaatio ei tähän pystynyt, ja ligniiniä sitoutui humukseen yhä enemmän kompostoinnin aikana. T. versicolor hajotti PCP:ia tehokkaasti, eikä se tuottanut myrkyllisiä kloorianisoleja, joita jotkut valkolahosienet saattavat muodostaa kloorifenoleista. Priming effect ilmiötä tutkittiin eri ikäisissä ja kypsyydeltään erilaisissa komposteissa. Kompostit erosvat toisistaan myös hajoamattoman jätteen määrän ja mikrobipopulaation suhteen. Negatiivinen priming effect havaittiin kaikissa epästabiileissa komposteissa (ikä enintään 6 kk), ja sen lisäksi yhdessä näistä komposteista positiivinen priming effect kokeen lopussa. Stabiileissa komposteissa (ikä vähintään 6 kk) ilmiötä ei sen sijaan havaittu. Epästabiileissa komposteissa biohajoavuudelle saadut tulokset eivät siis ole luotettavia. Työn tulosten perusteella valkolahosienet, ja erityisesti T. versicolor, ovat lupaavia saastuneen maan puhdistukseen, joskin sienirihmaston mahdollisuudet säilyä aktiivisena maan alkuperäisen mikrobipopulaation kanssa täytyy vielä selvittää. Kompostin sekapopulaatio, joka ei sisällä valkolahosieniä, hajotti ligniiniä yllättävän tehokkaasti termofiilisille sienille sopivissa lämpötiloissa, vaikka ligniini sitoutuikin pääasiallisesti humukseen. Kompostin kypsyys osoittautui tärkeäksi tekijäksi kontrolloidun kompostitestin onnistumisen kannalta. Priming effect ilmiön välttämiseksi on varmistettava, että testissä käytetty komposti on riittävän kypsä. Kompostien mikrobipopulaation koostumusta kompostoinnin eri vaiheissa tulisi tarkemmin selvittää, koska stabiilien ja epästabiilien kompostien ero aiheutui todennäköisesti populaatioiden rakenteessa vallitsevista eroista. Näin myös priming effect ilmiön syyt voitaisiin selittää paremmin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In boreal forests, microorganisms have a pivotal role in nutrient and water supply of trees as well as in litter decomposition and nutrient cycling. This reinforces the link between above-ground and below-ground communities in the context of sustainable productivity of forest ecosystems. In northern boreal forests, the diversity of microbes associated with the trees is high compared to the number of distinct tree species. In this thesis, the aim was to study whether conspecific tree individuals harbour different soil microbes and whether the growth of the trees and the community structure of the associated microbes are connected. The study was performed in a clonal field trial of Norway spruce, which was established in a randomized block design in a clear-cut area. Since out-planting in 1994, the spruce clones showed two-fold growth differences. The fast-growing spruce clones were associated with a more diverse community of ectomycorrhizal fungi than the slow-growing spruce clones. These growth performance groups also differed with respect to other aspects of the associated soil microorganisms: the species composition of ectomycorrhizal fungi, in the amount of extraradical fungal mycelium, in the structure of bacterial community associated with the mycelium, and in the structure of microbial community in the organic layer. The communities of fungi colonizing needle litter of the spruce clones in the field did not differ and the loss of litter mass after two-years decomposition was equal. In vitro, needles of the slow-growing spruce clones were colonized by a more diverse community of endophytic fungi that were shown to be significant needle decomposers. This study showed a relationship between the growth of Norway spruce clones and the community structure of the associated soil microbes. Spatial heterogeneity in soil microbial community was connected with intraspecific variation of trees. The latter may therefore influence soil biodiversity in monospecific forests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fungi have a fundamental role in carbon and nutrient transformations in the acids soils of boreal regions, such as peatlands, where high amounts of carbon (C) and nutrients are stored in peat, the pH is relatively low and the nutrient uptake of trees is highly dependent on mycorrhizae. In this thesis, the aim was to examine nitrogen (N) transformations and the availability of dissolved N compounds in forestry-drained peatlands, to compare the fungal community biomass and structure at various peat N levels, to investigate the growth of ectomycorrhizal fungi with variable P and K availability and to assess how the ectomycorrhizal fungi (ECM) affect N transformations. Both field and laboratory experiments were carried out. The peat N concentration did not affect the soil fungal community structure within a site. Phosphorus (P) and potassium (K) deficiency of the trees as well as the degree of decomposition and dissolved organic nitrogen (DON) concentration of the peat were shown to affect the fungal community structure and biomass of ECMs, highlighting the complexity of the below ground system on drained peatlands. The biomass of extrametrical mycorrhizal mycelia (EMM) was enhanced by P and/or K deficiency of the trees, and ECM biomass in the roots was increased by P deficiency. Thus, PK deficiency in drained peatlands may increase the allocation of C by the tree to ECMs. It was also observed that fungi can alter N mineralization processes in the rhizosphere but variously depending on fungal species and fertility level of peat. Gross N mineralization did not vary but the net N mineralization rate significantly increased along the N gradient in both field and laboratory experiments. Gross N immobilization also significantly increased when the peat N concentration increased. Nitrification was hardly detectable in either field or laboratory experiments. During the growing season, dissolved inorganic N (DIN) fluctuated much more than the relatively stable DON. Special methodological challenges associated with sampling and analysis in microbial studies on peatlands are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lead contamination in the environment is of particular concern, as it is a known toxin. Until recently, however, much less attention has been given to the local contamination caused by activities at shooting ranges compared to large-scale industrial contamination. In Finland, more than 500 tons of Pb is produced each year for shotgun ammunition. The contaminant threatens various organisms, ground water and the health of human populations. However, the forest at shooting ranges usually shows no visible sign of stress compared to nearby clean environments. The aboveground biota normally reflects the belowground ecosystem. Thus, the soil microbial communities appear to bear strong resistance to contamination, despite the influence of lead. The studies forming this thesis investigated a shooting range site at Hälvälä in Southern Finland, which is heavily contaminated by lead pellets. Previously it was experimentally shown that the growth of grasses and degradation of litter are retarded. Measurements of acute toxicity of the contaminated soil or soil extracts gave conflicting results, as enchytraeid worms used as toxicity reporters were strongly affected, while reporter bacteria showed no or very minor decreases in viability. Measurements using sensitive inducible luminescent reporter bacteria suggested that the bioavailability of lead in the soil is indeed low, and this notion was supported by the very low water extractability of the lead. Nevertheless, the frequency of lead-resistant cultivable bacteria was elevated based on the isolation of cultivable strains. The bacterial and fungal diversity in heavily lead contaminated shooting sectors were compared with those of pristine sections of the shooting range area. The bacterial 16S rRNA gene and fungal ITS rRNA gene were amplified, cloned and sequenced using total DNA extracted from the soil humus layer as the template. Altogether, 917 sequenced bacterial clones and 649 sequenced fungal clones revealed a high soil microbial diversity. No effect of lead contamination was found on bacterial richness or diversity, while fungal richness and diversity significantly differed between lead contaminated and clean control areas. However, even in the case of fungi, genera that were deemed sensitive were not totally absent from the contaminated area: only their relative frequency was significantly reduced. Some operational taxonomic units (OTUs) assigned to Basidiomycota were clearly affected, and were much rarer in the lead contaminated areas. The studies of this thesis surveyed EcM sporocarps, analyzed morphotyped EcM root tips by direct sequencing, and 454-pyrosequenced fungal communities in in-growth bags. A total of 32 EcM fungi that formed conspicuous sporocarps, 27 EcM fungal OTUs from 294 root tips, and 116 EcM fungal OTUs from a total of 8 194 ITS2 454 sequences were recorded. The ordination analyses by non-parametric multidimensional scaling (NMS) indicated that Pb enrichment induced a shift in the EcM community composition. This was visible as indicative trends in the sporocarp and root tip datasets, but explicitly clear in the communities observed in the in-growth bags. The compositional shift in the EcM community was mainly attributable to an increase in the frequencies of OTUs assigned to the genus Thelephora, and to a decrease in the OTUs assigned to Pseudotomentella, Suillus and Tylospora in Pb-contaminated areas when compared to the control. The enrichment of Thelephora in contaminated areas was also observed when examining the total fungal communities in soil using DNA cloning and sequencing technology. While the compositional shifts are clear, their functional consequences for the dominant trees or soil ecosystem remain undetermined. The results indicate that at the Hälvälä shooting range, lead influences the fungal communities but not the bacterial communities. The forest ecosystem shows apparent functional redundancy, since no significant effects were seen on forest trees. Recently, by means of 454 pyrosequencing , the amount of sequences in a single analysis run can be up to one million. It has been applied in microbial ecology studies to characterize microbial communities. The handling of sequence data with traditional programs is becoming difficult and exceedingly time consuming, and novel tools are needed to handle the vast amounts of data being generated. The field of microbial ecology has recently benefited from the availability of a number of tools for describing and comparing microbial communities using robust statistical methods. However, although these programs provide methods for rapid calculation, it has become necessary to make them more amenable to larger datasets and numbers of samples from pyrosequencing. As part of this thesis, a new program was developed, MuSSA (Multi-Sample Sequence Analyser), to handle sequence data from novel high-throughput sequencing approaches in microbial community analyses. The greatest advantage of the program is that large volumes of sequence data can be manipulated, and general OTU series with a frequency value can be calculated among a large number of samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wood-degrading fungi are able to degrade a large range of recalcitrant pollutants which resemble the lignin biopolymer. This ability is attributed to the production of lignin-modifying enzymes, which are extracellular and non-specific. Despite the potential of fungi in bioremediation, there is still an understanding gap in terms of the technology. In this thesis, the feasibility of two ex situ fungal bioremediation methods to treat contaminated soil was evaluated. Treatment of polycyclic aromatic hydrocarbons (PAHs)-contaminated marsh soil was studied in a stirred slurry-phase reactor. Due to the salt content in marsh soil, fungi were screened for their halotolerance, and the white-rot fungi Lentinus tigrinus, Irpex lacteus and Bjerkandera adusta were selected for further studies. These fungi degraded 40 - 60% of a PAH mixture (phenanthrene, fluoranthene, pyrene and chrysene) in a slurry-phase reactor (100 ml) during 30 days of incubation. Thereafter, B. adusta was selected to scale-up and optimize the process in a 5 L reactor. Maximum degradation of dibenzothiophene (93%), fluoranthene (82%), pyrene (81%) and chrysene (83%) was achieved with the free mycelium inoculum of the highest initial biomass (2.2 g/l). In autoclaved soil, MnP was the most important enzyme involved in PAH degradation. In non-sterile soil, endogenous soil microbes together with B. adusta also degraded the PAHs extensively, suggesting a synergic action between soil microbes and the fungus. A fungal solid-phase cultivation method to pretreat contaminated sawmill soil with high organic matter content was developed to enhance the effectiveness of the subsequent soil combustion. In a preliminary screening of 146 fungal strains, 28 out of 52 fungi, which extensively colonized non-sterile contaminated soil, were litter-decomposing fungi. The 18 strains further selected were characterized by their production of lignin-modifying and hydrolytic enzymes, of which MnP and endo-1,4-β-glucanase were the main enzymes during cultivation on Scots pine (Pinus sylvestris) bark. Of the six fungi selected for further tests, Gymnopilus luteofolius, Phanerochaete velutina, and Stropharia rugosoannulata were the most active soil organic matter degraders. The results showed that a six-month pretreatment of sawmill soil would result in a 3.5 - 9.5% loss of organic matter, depending on the fungus applied. The pretreatment process was scaled-up for a 0.56 m3 reactor, in which perforated plastic tubes filled with S. rugosoannulata growing on pine bark were introduced into the soil. The fungal pretreatment resulted in a soil mass loss of 30.5 kg, which represents 10% of the original soil mass (308 kg). Despite the fact that Scots pine bark contains several antimicrobial compounds, it was a suitable substrate for fungal growth and promoter of the production of oxidative enzymes, as well as an excellent and cheap natural carrier of fungal mycelium. This thesis successfully developed two novel fungal ex situ bioremediation technologies and introduce new insights for their further full-scale application. Ex situ slurry-phase fungal reactors might be applied in cases when the soil has a high water content or when the contaminant bioavailability is low; for example, in wastewater treatment plants to remove pharmaceutical residues. Fungal solid-phase bioremediation is a promising remediation technology to ex situ or in situ treat contaminated soil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Continuing urbanization is a crucial driver of land transformation, having widespread impacts on virtually all ecosystems. Terrestrial ecosystems, including disturbed ones, are dependent on soils, which provide a multitude of ecosystem services. As soils are always directly and/or indirectly impacted through land transformation, land cover change causes soil change. Knowledge of ecosystem properties and functions in soils is increasing in importance as humans continue to concentrate into already densely-populated areas. Urban soils often have hampered functioning due to various disturbances resulting from human activity. Innovative solutions are needed to bring the lacking ecosystem services and quality of life to these urban environments. For instance, the ecosystem services of the urban green infrastructure may be substantially improved through knowledge of their functional properties. In the research forming this thesis, the impacts of four plant species (Picea abies, Calluna vulgaris, Lotus corniculatus and Holcus lanatus) on belowground biota and regulatory ecosystem services were investigated in two different urban soil types. The retention of inorganic nitrogen and phosphorus in the plant-soil system, decomposition of plant litter, primary production, and the degradation of polycyclic aromatic hydrocarbons (PAHs) were examined in the field and under laboratory conditions. The main objective of the research was to determine whether the different plant species (representing traits with varying litter decomposability) will give rise to dissimilar urban belowground communities with differing ecological functions. Microbial activity as well as the abundance of nematodes and enchytraeid worm biomass was highest below the legume L. corniculatus. L. corniculatus and the grass H. lanatus, producing labile or intermediate quality litter, enhanced the proportion of bacteria in the soil rhizosphere, while the recalcitrant litter-producing shrub C. vulgaris and the conifer P. abies stimulated the growth of fungi. The loss of nitrogen from the plant-soil system was small for H. lanatus and the combination of C. vulgaris + P. abies, irrespective of their energy channel composition. These presumably nitrogen-conservative plant species effectively diminished the leaching losses from the plant-soil systems with all the plant traits present. The laboratory experiment revealed a difference in N allocation between the plant traits: C. vulgaris and P. abies sequestered significantly more N in aboveground shoots in comparison to L. corniculatus and H. Lanatus. Plant rhizosphere effects were less clear for phosphorus retention, litter decomposition and the degradation of PAH compounds. This may be due to the relatively short experimental durations, as the maturation of the plant-soil system is likely to take a considerably longer time. The empirical studies of this thesis demonstrated that the soil communities rapidly reflect changes in plant coverage, and this has consequences for the functionality of soils. The energy channel composition of soils can be manipulated through plants, which was also supported by the results of the separate meta-analysis conducted in this thesis. However, further research is needed to understand the linkages between the biological community properties and ecosystem services in strongly human-modified systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sichuanissa Tiibetin ylängön metsäkato on pysähtynyt mutta eroosio-ongelmat jatkuvat Viikin tropiikki-instituutin tutkija Ping ZHOU kartoitti trooppisen metsänhoidon alaan kuuluvassa väitöskirjatyössään maaperän eroosioalttiutta ja sen riippuvuutta metsäkasvillisuudesta Jangtsen tärkeää sivuhaaraa Min-jokea ympäröivällä n. 7400 neliökilometrin suuruisella valuma-alueella Sichuanin Aba-piirikunnassa. Aineistonaan hän käytti muun muassa satelliittikartoitustietoja ja mittaustuloksia yli 600 maastokoealalta. Tutkimuksen nimi suomeksi on "Maaperän eroosion mallinnus ja vuoristoisen valuma-alueen ekologinen ennallistaminen Sichuanissa Kiinassa". Aikaisempien tutkimusten perusteella oli tiedossa että metsien häviäminen tällä alueella pysähtyi jo 1980-luvun alussa. Sen jälkeen on metsien pinta-ala hitaasti kasvanut etupäässä sen vuoksi, että teollinen puunhakkuu luonnonmetsissä kiellettiin kokonaan v. 1998 ja 25 astetta jyrkemmillä rinteillä myös maatalouden harjoittaminen on saatu lopetetuksi viljelijöille tarjottujen taloudellisten houkuttimien avulla. Täten myös pelto- ja laidunmaata on voitu ennallistaa metsäksi. Ping Zhou pystyi jakamaan 5700 metrin korkeuteen saakka kohoavan vuoristoalueen eroosioalttiudeltaan erilaisiin vyöhykkeisiin rinteen kaltevuuden, sademäärän, kasvipeitteen ja maalajin perusteella. Noin 15 prosentilla tutkitun valuma-alueen pinta-alasta, lähinnä Min-joen pääuomaa ympäröivillä jyrkillä rinteillä, eroosioriski oli suuri tai erittäin suuri. Eri tyyppisellä kasvillisuudella oli hyvin erilainen vaikutus eroosioalttiuteen, ja myös alueen sijainti vuoriston eri korkeuksilla vaikutti eroosioon. Säästyneet lähes luonnontilaiset havumetsät, joita on etupäässä vuoriston ylimmissä osissa 2600-4000 metrin korkeudella, edistävät tehokkaasti metsän luontaista uudistumista ja levittäytymistä vaurioituneille alueille. Säilyneiden metsien puulajikoostumus antoi tutkimuksessa mahdollisuuden ennustaa metsien tulevaa kehitystä koko tutkitulla valuma-alueella sen eri korkeusvyöhykkeissä ja eri maaperätyypeillä. Ennallistamisen kannalta ongelmallisimpia olivat alueet joilta metsäpeite oli lähinnä puiden teollisen hakkuun vuoksi kokonaan hävinnyt ja joilla maaperä yleisesti oli eroosion pahoin kuluttama. Näillä alueilla ei ole tehty juuri mitään uudistamis- tai ennallistamistoimenpiteitä. Niillä metsien ennallistaminen vaatii myös puiden tai pensaiden istuttamista. Tähän sopivia ovat erityisesti ilmakehän typpeä sitovat lajit, joista alueella kasvaa luontaisena mm. sama tyrnilaji joka esiintyy myös Suomessa. Työssä tutkittiin yli kahdeksankymmenen paikallisen luontaisen puulajin (joista peräti noin kolmannes on havupuulajeja) ekologisia ominaisuuksia ja soveltuvuutta metsien ennallistamiseen. Avainasemassa työn onnistumisen kannalta ovat nyt paikalliset asukkaat, joiden maankäytön muutokset ovat jo selvästi edistänet luonnonmetsän ennalleen palautumista. Suomen Akatemia rahoitti vuosina 2004-2006 VITRI:n tutkimushanketta, josta Ping Zhou'n väitöskirjatyö muodosti keskeisen osan. Kenttätyö Sichuanissa avasi mahdollisuuden hedelmälliseen monitieteiseen yhteistyöhön ja tutkijavaihtoon Kiinan tiedeakatemian alaisen Chengdun biologiainstituutin (CIB) kanssa; tämä tieteellinen kanssakäyminen jatkuu edelleen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soils represent a remarkable stock of carbon, and forest soils are estimated to hold half of the global stock of soil carbon. Topical concern about the effects of climate change and forest management on soil carbon as well as practical reporting requirements set by climate conventions have created a need to assess soil carbon stock changes reliably and transparently. The large spatial variability of soil carbon commensurate with relatively slow changes in stocks hinders the assessment of soil carbon stocks and their changes by direct measurements. Models therefore widely serve to estimate carbon stocks and stock changes in soils. This dissertation aimed to develop the soil carbon model YASSO for upland forest soils. The model was aimed to take into account the most important processes controlling the decomposition in soils, yet remain simple enough to ensure its practical applicability in different applications. The model structure and assumptions were presented and the model parameters were defined with empirical measurements. The model was evaluated by studying the sensitivities of the model results to parameter values, by estimating the precision of the results with an uncertainty analysis, and by assessing the accuracy of the model by comparing the predictions against measured data and to the results of an alternative model. The model was applied to study the effects of intensified biomass extraction on the forest carbon balance and to estimate the effects of soil carbon deficit on net greenhouse gas emissions of energy use of forest residues. The model was also applied in an inventory based method to assess the national scale forest carbon balance for Finland’s forests from 1922 to 2004. YASSO managed to describe sufficiently the effects of both the variable litter and climatic conditions on decomposition. When combined with the stand models or other systems providing litter information, the dynamic approach of the model proved to be powerful for estimating changes in soil carbon stocks on different scales. The climate dependency of the model, the effects of nitrogen on decomposition and forest growth as well as the effects of soil texture on soil carbon stock dynamics are areas for development when considering the applicability of the model to different research questions, different land use types and wider geographic regions. Intensified biomass extraction affects soil carbon stocks, and these changes in stocks should be taken into account when considering the net effects of forest residue utilisation as energy. On a national scale, soil carbon stocks play an important role in forest carbon balances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The temperature sensitivity of decomposition of different soil organic matter (SOM) fractions was studied with laboratory incubations using 13C and 14C isotopes to differentiate between SOM of different age. The quality of SOM and the functionality and composition of microbial communities in soils formed under different climatic conditions were also studied. Transferring of organic layers from a colder to a warmer climate was used to assess how changing climate, litter input and soil biology will affect soil respiration and its temperature sensitivity. Together, these studies gave a consistent picture on how warming climate will affect the decomposition of different SOM fractions in Finnish forest soils: the most labile C was least temperature sensitive, indicating that it is utilized irrespective of temperature. The decomposition of intermediate C, with mean residence times from some years to decades, was found to be highly temperature sensitive. Even older, centennially cycling C was again less temperature sensitive, indicating that different stabilizing mechanisms were limiting its decomposition even at higher temperatures. Because the highly temperature sensitive, decadally cycling C, forms a major part of SOM stock in the organic layers of the studied forest soils, these results mean that these soils could lose more carbon during the coming years and decades than estimated earlier. SOM decomposition in boreal forest soils is likely to increase more in response to climate warming, compared to temperate or tropical soils, also because the Q10 is temperature dependent. In the northern soils the warming will occur at a lower temperature range, where Q10 is higher, and a similar increase in temperature causes a higher relative increase in respiration rates. The Q10 at low temperatures was found to be inversely related to SOM quality. At higher temperatures respiration was increasingly limited by low substrate availability.