7 resultados para Second Church (Boston, Mass.)

em Helda - Digital Repository of University of Helsinki


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poor pharmacokinetics is one of the reasons for the withdrawal of drug candidates from clinical trials. There is an urgent need for investigating in vitro ADME (absorption, distribution, metabolism and excretion) properties and recognising unsuitable drug candidates as early as possible in the drug development process. Current throughput of in vitro ADME profiling is insufficient because effective new synthesis techniques, such as drug design in silico and combinatorial synthesis, have vastly increased the number of drug candidates. Assay technologies for larger sets of compounds than are currently feasible are critically needed. The first part of this work focused on the evaluation of cocktail strategy in studies of drug permeability and metabolic stability. N-in-one liquid chromatography-tandem mass spectrometry (LC/MS/MS) methods were developed and validated for the multiple component analysis of samples in cocktail experiments. Together, cocktail dosing and LC/MS/MS were found to form an effective tool for increasing throughput. First, cocktail dosing, i.e. the use of a mixture of many test compounds, was applied in permeability experiments with Caco-2 cell culture, which is a widely used in vitro model for small intestinal absorption. A cocktail of 7-10 reference compounds was successfully evaluated for standardization and routine testing of the performance of Caco-2 cell cultures. Secondly, cocktail strategy was used in metabolic stability studies of drugs with UGT isoenzymes, which are one of the most important phase II drug metabolizing enzymes. The study confirmed that the determination of intrinsic clearance (Clint) as a cocktail of seven substrates is possible. The LC/MS/MS methods that were developed were fast and reliable for the quantitative analysis of a heterogenous set of drugs from Caco-2 permeability experiments and the set of glucuronides from in vitro stability experiments. The performance of a new ionization technique, atmospheric pressure photoionization (APPI), was evaluated through comparison with electrospray ionization (ESI), where both techniques were used for the analysis of Caco-2 samples. Like ESI, also APPI proved to be a reliable technique for the analysis of Caco-2 samples and even more flexible than ESI because of the wider dynamic linear range. The second part of the experimental study focused on metabolite profiling. Different mass spectrometric instruments and commercially available software tools were investigated for profiling metabolites in urine and hepatocyte samples. All the instruments tested (triple quadrupole, quadrupole time-of-flight, ion trap) exhibited some good and some bad features in searching for and identifying of expected and non-expected metabolites. Although, current profiling software is helpful, it is still insufficient. Thus a time-consuming largely manual approach is still required for metabolite profiling from complex biological matrices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A population-based early detection program for breast cancer has been in progress in Finland since 1987. According to regulations during the study period 1987-2001, free of charge mammography screening was offered every second year to women aged 50-59 years. Recently, the screening service was decided to be extended to age group 50-69. However, the scope of the program is still frequently discussed in public and information about potential impacts of mass-screening practice changes on future breast cancer burden is required. The aim of this doctoral thesis is to present methodologies for taking into account the mass-screening invitation information in breast cancer burden predictions, and to present alternative breast cancer incidence and mortality predictions up to 2012 based on scenarios of the future screening policy. The focus of this work is not on assessing the absolute efficacy but the effectiveness of mass-screening, and, by utilizing the data on invitations, on showing the estimated impacts of changes in an existing screening program on the short-term predictions. The breast cancer mortality predictions are calculated using a model that combines incidence, cause-specific and other cause survival on individual level. The screening invitation data are incorporated into modeling of breast cancer incidence and survival by dividing the program into separate components (first and subsequent rounds and years within them, breaks, and post screening period) and defining a variable that gives the component of the screening program. The incidence is modeled using a Poisson regression approach and the breast cancer survival by applying a parametric mixture cure model, where the patient population is allowed to be a combination of cured and uncured patients. The patients risk to die from other causes than breast cancer is allowed to differ from that of a corresponding general population group and to depend on age and follow-up time. As a result, the effects of separate components of the screening program on incidence, proportion of cured and the survival of the uncured are quantified. According to the predictions, the impacts of policy changes, like extending the program from age group 50-59 to 50-69, are clearly visible on incidence while the effects on mortality in age group 40-74 are minor. Extending the screening service would increase the incidence of localized breast cancers but decrease the rates of non-localized breast cancer. There were no major differences between mortality predictions yielded by alternative future scenarios of the screening policy: Any policy change would have at the most a 3.0% reduction on overall breast cancer mortality compared to continuing the current practice in the near future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accelerator mass spectrometry (AMS) is an ultrasensitive technique for measuring the concentration of a single isotope. The electric and magnetic fields of an electrostatic accelerator system are used to filter out other isotopes from the ion beam. The high velocity means that molecules can be destroyed and removed from the measurement background. As a result, concentrations down to one atom in 10^16 atoms are measurable. This thesis describes the construction of the new AMS system in the Accelerator Laboratory of the University of Helsinki. The system is described in detail along with the relevant ion optics. System performance and some of the 14C measurements done with the system are described. In a second part of the thesis, a novel statistical model for the analysis of AMS data is presented. Bayesian methods are used in order to make the best use of the available information. In the new model, instrumental drift is modelled with a continuous first-order autoregressive process. This enables rigorous normalization to standards measured at different times. The Poisson statistical nature of a 14C measurement is also taken into account properly, so that uncertainty estimates are much more stable. It is shown that, overall, the new model improves both the accuracy and the precision of AMS measurements. In particular, the results can be improved for samples with very low 14C concentrations or measured only a few times.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis describes current and past n-in-one methods and presents three early experimental studies using mass spectrometry and the triple quadrupole instrument on the application of n-in-one in drug discovery. N-in-one strategy pools and mix samples in drug discovery prior to measurement or analysis. This allows the most promising compounds to be rapidly identified and then analysed. Nowadays properties of drugs are characterised earlier and in parallel with pharmacological efficacy. Studies presented here use in vitro methods as caco-2 cells and immobilized artificial membrane chromatography for drug absorption and lipophilicity measurements. The high sensitivity and selectivity of liquid chromatography mass spectrometry are especially important for new analytical methods using n-in-one. In the first study, the fragmentation patterns of ten nitrophenoxy benzoate compounds, serial homology, were characterised and the presence of the compounds was determined in a combinatorial library. The influence of one or two nitro substituents and the alkyl chain length of methyl to pentyl on collision-induced fragmentation was studied, and interesting structurefragmentation relationships were detected. Two nitro group compounds increased fragmentation compared to one nitro group, whereas less fragmentation was noted in molecules with a longer alkyl chain. The most abundant product ions were nitrophenoxy ions, which were also tested in the precursor ion screening of the combinatorial library. In the second study, the immobilized artificial membrane chromatographic method was transferred from ultraviolet detection to mass spectrometric analysis and a new method was developed. Mass spectra were scanned and the chromatographic retention of compounds was analysed using extract ion chromatograms. When changing detectors and buffers and including n-in-one in the method, the results showed good correlation. Finally, the results demonstrated that mass spectrometric detection with gradient elution can provide a rapid and convenient n-in-one method for ranking the lipophilic properties of several structurally diverse compounds simultaneously. In the final study, a new method was developed for caco-2 samples. Compounds were separated by liquid chromatography and quantified by selected reaction monitoring using mass spectrometry. This method was used for caco-2 samples, where absorption of ten chemically and physiologically different compounds was screened using both single and nin- one approaches. These three studies used mass spectrometry for compound identification, method transfer and quantitation in the area of mixture analysis. Different mass spectrometric scanning modes for the triple quadrupole instrument were used in each method. Early drug discovery with n-in-one is area where mass spectrometric analysis, its possibilities and proper use, is especially important.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mass spectrometry (MS) became a standard tool for identifying metabolites in biological tissues, and metabolomics is slowly acknowledged as a legitimate research discipline for characterizing biological conditions. The computational analyses of metabolomics, however, lag behind compared with the rapid advances in analytical aspects for two reasons. First is the lack of standardized data repository for mass spectra: each research institution is flooded with gigabytes of mass-spectral data from its own analytical groups and cannot host a world-class repository for mass spectra. The second reason is the lack of informatics experts that are fully experienced with spectral analyses. The two barriers must be overcome to establish a publicly free data server for MS analysis in metabolomics as does GenBank in genomics and UniProt in proteomics. The workshop brought together bioinformaticians working on mass spectral analyses in Finland and Japan with the goal to establish a consortium to freely exchange and publicize mass spectra of metabolites measured on various platforms computational tools to analyze spectra spectral knowledge that are computationally predicted from standardized data. This book contains the abstracts of the presentations given in the workshop. The programme of the workshop consisted of oral presentations from Japan and Finland, invited lectures from Steffen Neumann (Leibniz Institute of Plant Biochemistry), Matej Oresic (VTT), Merja Penttila (VTT) and Nicola Zamboni (ETH Zurich) as well as free form discussion among the participants. The event was funded by Academy of Finland (grants 139203 and 118653), Japan Society for the Promotion of Science (JSPS Japan-Finland Bilateral Semi- nar Program 2010) and Department of Computer Science University of Helsinki. We would like to thank all the people contributing to the technical pro- gramme and the sponsors for making the workshop possible. Helsinki, October 2010 Masanori Arita, Markus Heinonen and Juho Rousu

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The analysis of lipid compositions from biological samples has become increasingly important. Lipids have a role in cardiovascular disease, metabolic syndrome and diabetes. They also participate in cellular processes such as signalling, inflammatory response, aging and apoptosis. Also, the mechanisms of regulation of cell membrane lipid compositions are poorly understood, partially because a lack of good analytical methods. Mass spectrometry has opened up new possibilities for lipid analysis due to its high resolving power, sensitivity and the possibility to do structural identification by fragment analysis. The introduction of Electrospray ionization (ESI) and the advances in instrumentation revolutionized the analysis of lipid compositions. ESI is a soft ionization method, i.e. it avoids unwanted fragmentation the lipids. Mass spectrometric analysis of lipid compositions is complicated by incomplete separation of the signals, the differences in the instrument response of different lipids and the large amount of data generated by the measurements. These factors necessitate the use of computer software for the analysis of the data. The topic of the thesis is the development of methods for mass spectrometric analysis of lipids. The work includes both computational and experimental aspects of lipid analysis. The first article explores the practical aspects of quantitative mass spectrometric analysis of complex lipid samples and describes how the properties of phospholipids and their concentration affect the response of the mass spectrometer. The second article describes a new algorithm for computing the theoretical mass spectrometric peak distribution, given the elemental isotope composition and the molecular formula of a compound. The third article introduces programs aimed specifically for the analysis of complex lipid samples and discusses different computational methods for separating the overlapping mass spectrometric peaks of closely related lipids. The fourth article applies the methods developed by simultaneously measuring the progress curve of enzymatic hydrolysis for a large number of phospholipids, which are used to determine the substrate specificity of various A-type phospholipases. The data provides evidence that the substrate efflux from bilayer is the key determining factor for the rate of hydrolysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study is focused on the development and evaluation of ion mobility instrumentation with various atmospheric pressure ionization techniques and includes the following work. First, a high-resolution drift tube ion mobility spectrometer (IMS), coupled with a commercial triple quadrupole mass spectrometer (MS), was developed. This drift tube IMS is compatible with the front-end of commercial Sciex mass spectrometers (e.g., Sciex API-300, 365, and 3000) and also allows easy (only minor modifications are needed) installation between the original atmospheric pressure ion source and the triple quadrupole mass spectrometer. Performance haracteristics (e.g.,resolving power, detection limit, transmission efficiency of ions) of this IMS-MS instrument were evaluated. Development of the IMS-MS instrument also led to a study where a proposal was made that tetraalkylammonium ions can be used as chemical standards for ESI-IMS. Second, the same drift tube design was also used to build a standalone ion mobility spectrometer equipped with a Faraday plate detector. For this highresolution (resolving power about 100 shown) IMS device, a multi-ion source platform was built, which allows the use of a range of atmospheric pressure ionization methods, such as: corona discharge chemical ionization (CD-APCI), atmospheric pressure photoionization (APPI), and radioactive atmospheric pressure chemical ionization (R-APCI). The multi-ion source platform provides easy switching between ionization methods and both positive and negative ionization modes can be used. Third, a simple desorpion/ionization on silicon (DIOS) ion source set-up for use with the developed IMS and IMS-MS instruments was built and its operation demonstrated. Fourth, a prototype of a commercial aspiration-type ion mobility spectrometer was mounted in front of a commercial triple quadrupole mass spectrometer. The set-up, which is simple, easy to install, and requires no major modifications to the MS, provides the possibility of gathering fundamental information about aspiration mobility spectrometry.