16 resultados para Saturated Clays
em Helda - Digital Repository of University of Helsinki
Resumo:
The central nervous system (CNS) is the most cholesterol-rich organ in the body. Cholesterol is essential to CNS functions such as synaptogenesis and formation of myelin. Significant differences exist in cholesterol metabolism between the CNS and the peripheral organs. However, the regulation of cholesterol metabolism in the CNS is poorly understood compared to our knowledge of the regulation of cholesterol homeostasis in organs reached by cholesterol-carrying lipoprotein particles in the circulation. Defects in CNS cholesterol homeostasis have been linked to a variety of neurodegenerative diseases, including common diseases with complex pathogenetic mechanisms such as Alzheimer s disease. In spite of intense effort, the mechanisms which link disturbed cholesterol homeostasis to these diseases remain elusive. We used three inherited recessive neurodegenerative disorders as models in the studies included in this thesis: Niemann-Pick type C (NPC), infantile neuronal ceroid lipofuscinosis and cathepsin D deficiency. Of these three, NPC has previously been linked to disturbed intracellular cholesterol metabolism. Elucidating the mechanisms with which disturbances of cholesterol homeostasis link to neurodegeneration in recessive inherited disorders with known genetic lesions should shed light on how cholesterol is handled in the healthy CNS and help to understand how these and more complex diseases develop. In the first study we analyzed the synthesis of sterols and the assembly and secretion of lipoprotein particles in Npc1 deficient primary astrocytes. We found that both wild type and Npc1 deficient astrocytes retain significant amounts of desmosterol and other cholesterol precursor sterols as membrane constituents. No difference was observed in the synthesis of sterols and the secretion of newly synthesized sterols between Npc1 wild type, heterozygote or knockout astrocytes. We found that the incorporation of newly synthesized sterols into secreted lipoprotein particles was not inhibited by Npc1 mutation, and the lipoprotein particles were similar to those excreted by wild type astrocytes in shape and size. The bulk of cholesterol was found to be secreted independently of secreted NPC2. These observations demonstrate the ability of Npc1 deficient astrocytes to handle de novo sterols, and highlight the unique sterol composition in the developing brain. Infantile neuronal ceroid lipofuscinosis is caused by the deficiency of a functional Ppt1 enzyme in the cells. In the second study, global gene expression studies of approximately 14000 mouse genes showed significant changes in the expression of 135 genes in Ppt1 deficient neurons compared to wild type. Several genes encoding for enzymes of the mevalonate pathway of cholesterol biosynthesis showed increased expression. As predicted by the expression data, sterol biosynthesis was found to be upregulated in the knockout neurons. These data link Ppt1 deficiency to disturbed cholesterol metabolism in CNS neurons. In the third study we investigated the effect of cathepsin D deficiency on the structure of myelin and lipid homeostasis in the brain. Our proteomics data, immunohistochemistry and western blotting data showed altered levels of the myelin protein components myelin basic protein, proteolipid protein and 2 , 3 -cyclic nucleotide 3 phosphodiesterase in the brains of cathepsin D deficient mice. Electron microscopy revealed altered myelin structure in cathepsin D deficient brains. Additionally, plasmalogen-derived alkenyl chains and 20- and 24-carbon saturated and monounsaturated fatty acids typical for glycosphingolipids were found to be significantly reduced, but polyunsaturated species were significantly increased in the knockout brains, pointing to a decrease in white matter. The levels of ApoE and ABCA1 proteins linked to cholesterol efflux in the CNS were found to be altered in the brains of cathepsin D deficient mice, along with an accumulation of cholesteryl esters and a decrease in triglycerols. Together these data demonstrate altered myelin architecture in cathepsin D deficient mice and link cathepsin D deficiency to aberrant cholesterol metabolism and trafficking. Basic research into rare monogenic diseases sheds light on the underlying biological processes which are perturbed in these conditions and contributes to our understanding of the physiological function of healthy cells. Eventually, understanding gained from the study of disease models may contribute towards establishing treatment for these disorders and further our understanding of the pathogenesis of other, more complex and common diseases.
Resumo:
Type 2 diabetes is an increasing, serious, and costly public health problem. The increase in the prevalence of the disease can mainly be attributed to changing lifestyles leading to physical inactivity, overweight, and obesity. These lifestyle-related risk factors offer also a possibility for preventive interventions. Until recently, proper evidence regarding the prevention of type 2 diabetes has been virtually missing. To be cost-effective, intensive interventions to prevent type 2 diabetes should be directed to people at an increased risk of the disease. The aim of this series of studies was to investigate whether type 2 diabetes can be prevented by lifestyle intervention in high-risk individuals, and to develop a practical method to identify individuals who are at high risk of type 2 diabetes and would benefit from such an intervention. To study the effect of lifestyle intervention on diabetes risk, we recruited 522 volunteer, middle-aged (aged 40 - 64 at baseline), overweight (body mass index > 25 kg/m2) men (n = 172) and women (n = 350) with impaired glucose tolerance to the Diabetes Prevention Study (DPS). The participants were randomly allocated either to the intensive lifestyle intervention group or the control group. The control group received general dietary and exercise advice at baseline, and had annual physician's examination. The participants in the intervention group received, in addition, individualised dietary counselling by a nutritionist. They were also offered circuit-type resistance training sessions and were advised to increase overall physical activity. The intervention goals were to reduce body weight (5% or more reduction from baseline weight), limit dietary fat (< 30% of total energy consumed) and saturated fat (< 10% of total energy consumed), and to increase dietary fibre intake (15 g / 1000 kcal or more) and physical activity (≥ 30 minutes/day). Diabetes status was assessed annually by a repeated 75 g oral glucose tolerance testing. First analysis on end-points was completed after a mean follow-up of 3.2 years, and the intervention phase was terminated after a mean duration of 3.9 years. After that, the study participants continued to visit the study clinics for the annual examinations, for a mean of 3 years. The intervention group showed significantly greater improvement in each intervention goal. After 1 and 3 years, mean weight reductions were 4.5 and 3.5 kg in the intervention group and 1.0 kg and 0.9 kg in the control group. Cardiovascular risk factors improved more in the intervention group. After a mean follow-up of 3.2 years, the risk of diabetes was reduced by 58% in the intervention group compared with the control group. The reduction in the incidence of diabetes was directly associated with achieved lifestyle goals. Furthermore, those who consumed moderate-fat, high-fibre diet achieved the largest weight reduction and, even after adjustment for weight reduction, the lowest diabetes risk during the intervention period. After discontinuation of the counselling, the differences in lifestyle variables between the groups still remained favourable for the intervention group. During the post-intervention follow-up period of 3 years, the risk of diabetes was still 36% lower among the former intervention group participants, compared with the former control group participants. To develop a simple screening tool to identify individuals who are at high risk of type 2 diabetes, follow-up data of two population-based cohorts of 35-64 year old men and women was used. The National FINRISK Study 1987 cohort (model development data) included 4435 subjects, with 182 new drug-treated cases of diabetes identified during ten years, and the FINRISK Study 1992 cohort (model validation data) included 4615 subjects, with 67 new cases of drug-treated diabetes during five years, ascertained using the Social Insurance Institution's Drug register. Baseline age, body mass index, waist circumference, history of antihypertensive drug treatment and high blood glucose, physical activity and daily consumption of fruits, berries or vegetables were selected into the risk score as categorical variables. In the 1987 cohort the optimal cut-off point of the risk score identified 78% of those who got diabetes during the follow-up (= sensitivity of the test) and 77% of those who remained free of diabetes (= specificity of the test). In the 1992 cohort the risk score performed equally well. The final Finnish Diabetes Risk Score (FINDRISC) form includes, in addition to the predictors of the model, a question about family history of diabetes and the age category of over 64 years. When applied to the DPS population, the baseline FINDRISC value was associated with diabetes risk among the control group participants only, indicating that the intensive lifestyle intervention given to the intervention group participants abolished the diabetes risk associated with baseline risk factors. In conclusion, the intensive lifestyle intervention produced long-term beneficial changes in diet, physical activity, body weight, and cardiovascular risk factors, and reduced diabetes risk. Furthermore, the effects of the intervention were sustained after the intervention was discontinued. The FINDRISC proved to be a simple, fast, inexpensive, non-invasive, and reliable tool to identify individuals at high risk of type 2 diabetes. The use of FINDRISC to identify high-risk subjects, followed by lifestyle intervention, provides a feasible scheme in preventing type 2 diabetes, which could be implemented in the primary health care system.
Resumo:
Cardiovascular diseases (CVDs) are the leading cause of mortality in the world. Studies of the impact of single nutrients on the risk for CVD have often provided inconclusive results, and recent research in nutritional epidemiology with a more holistic whole-diet approach has proven fruitful. Moreover, dietary habits in childhood and adolescence may play a role in later health and disease, either independently or by tracking into adulthood. The main aims of this study were to find childhood and adulthood determinants of adulthood diet, to identify dietary patterns present among the study population and to study the associations between long-term food choices and cardiovascular health in young Finnish adults. The study is a part of the multidisciplinary Cardiovascular Risk in Young Finns study, which is an ongoing, prospective cohort study with a 21-year follow-up. At baseline in 1980, the subjects were children and adolescents aged 3 to 18 years (n included in this study = 1768), and young adults aged 24 to 39 years at the latest follow-up study in 2001 (n = 1037). Food consumption and nutrient intakes were assessed with repeated 48-hour dietary recalls. Other determinations have included comprehensive risk factor assessments using blood tests, physical measurements and questionnaires. In the latest follow-up, ultrasound examinations were performed to study early atherosclerotic vascular changes. The average intakes showed substantial changes since 1980. Intakes of fat and saturated fat had decreased, whereas the consumption of fruits and vegetables had increased. Intake of fat and consumption of vegetables in childhood and physical activity in adulthood were important health behavioural determinants of adult diet. Additionally, a principal component analysis was conducted to identify major dietary patterns at each study point. A similar set of two major patterns was recognised throughout the study. The traditional dietary pattern positively correlated with the consumption of traditional Finnish foods, such as rye, potatoes, milk, butter, sausages and coffee, and negatively correlated with fruit, berries and dairy products other than milk. This type of diet was independently associated with several risk factors of CVD, such as total and low-density lipoprotein cholesterol, apolipoprotein B and C-reactive protein concentrations among both genders, as well as with systolic blood pressure and insulin levels among women. The traditional pattern was also independently associated with intima media thickness (IMT), a subclinical predictor of CVD, in men but not in women. The health-conscious pattern, predominant among female subjects, non-smokers and urbanites, was characterised by more health-conscious food choices such as vegetables, legumes and nuts, tea, rye, fish, cheese and other dairy products, as well as by the consumption of alcoholic beverages. This pattern was inversely, but less strongly, associated with cardiovascular risk factors. Tracking of the dietary pattern scores was observed, particularly among subjects who were adolescents at baseline. Moreover, a long-term high intake of protein concurrent with a low intake of fat was positively associated with IMT. These findings suggest that food behaviour and food choices are to some extent established as early as in childhood or adolescence and may significantly track into adulthood. Long-term adherence to traditional food choices seems to increase the risk for developing CVD, especially among men. Those with intentional or unintentional low fat diets, but with high intake of protein may also be at increased risk for CVD. The findings offer practical, food-based information on the relationship between diet and CVD and encourage further use of the whole-diet approach in epidemiological research. The results support earlier findings that long-term food choices play a role in the development of CVD. The apparent influence of childhood habits is important to bear in mind when planning educational strategies for the primary prevention of CVD. Further studies on food choices over the entire lifespan are needed.
Resumo:
An important safety aspect to be considered when foods are enriched with phytosterols and phytostanols is the oxidative stability of these lipid compounds, i.e. their resistance to oxidation and thus to the formation of oxidation products. This study concentrated on producing scientific data to support this safety evaluation process. In the absence of an official method for analyzing of phytosterol/stanol oxidation products, we first developed a new gas chromatographic - mass spectrometric (GC-MS) method. We then investigated factors affecting these compounds' oxidative stability in lipid-based food models in order to identify critical conditions under which significant oxidation reactions may occur. Finally, the oxidative stability of phytosterols and stanols in enriched foods during processing and storage was evaluated. Enriched foods covered a range of commercially available phytosterol/stanol ingredients, different heat treatments during food processing, and different multiphase food structures. The GC-MS method was a powerful tool for measuring the oxidative stability. Data obtained in food model studies revealed that the critical factors for the formation and distribution of the main secondary oxidation products were sterol structure, reaction temperature, reaction time, and lipid matrix composition. Under all conditions studied, phytostanols as saturated compounds were more stable than unsaturated phytosterols. In addition, esterification made phytosterols more reactive than free sterols at low temperatures, while at high temperatures the situation was the reverse. Generally, oxidation reactions were more significant at temperatures above 100°C. At lower temperatures, the significance of these reactions increased with increasing reaction time. The effect of lipid matrix composition was dependent on temperature; at temperatures above 140°C, phytosterols were more stable in an unsaturated lipid matrix, whereas below 140°C they were more stable in a saturated lipid matrix. At 140°C, phytosterols oxidized at the same rate in both matrices. Regardless of temperature, phytostanols oxidized more in an unsaturated lipid matrix. Generally, the distribution of oxidation products seemed to be associated with the phase of overall oxidation. 7-ketophytosterols accumulated when oxidation had not yet reached the dynamic state. Once this state was attained, the major products were 5,6-epoxyphytosterols and 7-hydroxyphytosterols. The changes observed in phytostanol oxidation products were not as informative since all stanol oxides quantified represented hydroxyl compounds. The formation of these secondary oxidation products did not account for all of the phytosterol/stanol losses observed during the heating experiments, indicating the presence of dimeric, oligomeric or other oxidation products, especially when free phytosterols and stanols were heated at high temperatures. Commercially available phytosterol/stanol ingredients were stable during such food processes as spray-drying and ultra high temperature (UHT)-type heating and subsequent long-term storage. Pan-frying, however, induced phytosterol oxidation and was classified as a rather deteriorative process. Overall, the findings indicated that although phytosterols and stanols are stable in normal food processing conditions, attention should be paid to their use in frying. Complex interactions between other food constituents also suggested that when new phytosterol-enriched foods are developed their oxidative stability must first be established. The results presented here will assist in choosing safe conditions for phytosterol/stanol enrichment.
Resumo:
A wide range of models used in agriculture, ecology, carbon cycling, climate and other related studies require information on the amount of leaf material present in a given environment to correctly represent radiation, heat, momentum, water, and various gas exchanges with the overlying atmosphere or the underlying soil. Leaf area index (LAI) thus often features as a critical land surface variable in parameterisations of global and regional climate models, e.g., radiation uptake, precipitation interception, energy conversion, gas exchange and momentum, as all areas are substantially determined by the vegetation surface. Optical wavelengths of remote sensing are the common electromagnetic regions used for LAI estimations and generally for vegetation studies. The main purpose of this dissertation was to enhance the determination of LAI using close-range remote sensing (hemispherical photography), airborne remote sensing (high resolution colour and colour infrared imagery), and satellite remote sensing (high resolution SPOT 5 HRG imagery) optical observations. The commonly used light extinction models are applied at all levels of optical observations. For the sake of comparative analysis, LAI was further determined using statistical relationships between spectral vegetation index (SVI) and ground based LAI. The study areas of this dissertation focus on two regions, one located in Taita Hills, South-East Kenya characterised by tropical cloud forest and exotic plantations, and the other in Gatineau Park, Southern Quebec, Canada dominated by temperate hardwood forest. The sampling procedure of sky map of gap fraction and size from hemispherical photographs was proven to be one of the most crucial steps in the accurate determination of LAI. LAI and clumping index estimates were significantly affected by the variation of the size of sky segments for given zenith angle ranges. On sloping ground, gap fraction and size distributions present strong upslope/downslope asymmetry of foliage elements, and thus the correction and the sensitivity analysis for both LAI and clumping index computations were demonstrated. Several SVIs can be used for LAI mapping using empirical regression analysis provided that the sensitivities of SVIs at varying ranges of LAI are large enough. Large scale LAI inversion algorithms were demonstrated and were proven to be a considerably efficient alternative approach for LAI mapping. LAI can be estimated nonparametrically from the information contained solely in the remotely sensed dataset given that the upper-end (saturated SVI) value is accurately determined. However, further study is still required to devise a methodology as well as instrumentation to retrieve on-ground green leaf area index . Subsequently, the large scale LAI inversion algorithms presented in this work can be precisely validated. Finally, based on literature review and this dissertation, potential future research prospects and directions were recommended.
Resumo:
This study brings new insights into the magmatic evolution of natural F-enriched peraluminous granitic systems. The Artjärvi, Sääskjärvi and Kymi granite stocks within the 1.64 Ga Wiborg rapakivi granite batholith have been investigated by petrographic, geochemical, experimental and melt inclusion methods. These stocks represent late-stage leucocratic and weakly peraluminous intrusive phases typical of rapakivi granites worldwide. The Artjärvi and Sääskjärvi stocks are multiphase intrusions in which the most evolved phase is topaz granite. The Kymi stock contains topaz throughout and has a well-developed zoned structure, from the rim to the center: stockscheider pegmatite equigranular topaz granite porphyritic topaz granite. Geochemically the topaz granites are enriched in F, Li, Be, Ga, Rb, Sn and Nb and depleted in Mg, Fe, Ti, Ba, Sr, Zr and Eu. The anomalous geochemistry and mineralogy of the topaz granites are essentially magmatic in origin; postmagmatic reactions have only slightly modified the compositions. The Kymi equigranular topaz granite shows the most evolved character, and the topaz granites at Artjärvi and Sääskjärvi resemble the less evolved porphyritic topaz granite of the Kymi stock. Stockscheiders are found at the roof contacts of the Artjärvi and Kymi stocks. The stockscheider at Artjärvi is composed of biotite-rich schlieren and pegmatite layers parallel to the contact. The schlieren layering is considered to have formed by velocity-gradient sorting mechanism parallel to the flow, which led to the accumulation of mafic minerals along the upper contact of the topaz granite. Cooling and contraction of the topaz granite formed fractures parallel to the roof contact and residual pegmatite magmas were injected along the fractures and formed the pegmatite layers. The zoned structure of the Kymi stock is the result of intrusion of highly evolved residual melt from deeper parts of the magma chamber along the fractured contact between the porphyritic granite crystal mush and country rock. The equigranular topaz granite and marginal pegmatite (stockscheider) crystallized from this evolved melt. Phase relations of the Kymi equigranular topaz granite have been investigated utilizing crystallization experiments at 100 to 500 MPa as a function of water activity and F content. Fluorite and topaz can crystallize as liquidus phases in F-rich peraluminous systems, but the F content of the melt should exceed 2.5 - 3.0 wt % to facilitate crystallization of topaz. In peraluminous F-bearing melts containing more than 1 wt % F, topaz and muscovite are expected to be the first F-bearing phases to crystallize at high pressure, whereas fluorite and topaz should crystallize first at low pressure. Overall, the saturation of fluorite and topaz follows the reaction: CaAl2Si2O8 (plagioclase) + 2[AlF3]melt = CaF2 (fluorite) + 2Al2SiO4F2 (topaz). The obtained partition coefficient for F between biotite and glass D(F)Bt/glass is 1.89 to 0.80 (average 1.29) and can be used as an empirical fluormeter to determine the F content of coexisting melts. In order to study the magmatic evolution of the Kymi stock, crystallized melt inclusions in quartz and topaz grains in the porphyritic and the equigranular topaz granites and the marginal pegmatite were rehomogenized and analyzed. The homogenization conditions for the melt inclusions from the granites were 700 °C, 300 MPa, and 24 h, and for melt inclusions from the pegmatite, 700 °C, 100 MPa, and 24/96 h. The majority of the melt inclusions is chemically similar to the bulk rocks (excluding H2O content), but a few melt inclusions in the equigranular granite show clearly higher F and low K2O contents (on average 11.6 wt % F, 0.65 wt % K2O). The melt inclusion compositions indicate coexistence of two melt fractions, a prevailing peraluminous and a very volatile-rich, possibly peralkaline. Combined petrological, experimental and melt inclusion studies of the Kymi equigranular topaz granite indicate that plagioclase was the liquidus phase at nearly water-saturated (fluid-saturated) conditions and that the F content of the melt was at least 2 wt %. The early crystallization of biotite and the presence of muscovite in crystallization experiments at 200 MPa contrasts with the late-stage crystallization of biotite and the absence of muscovite in the equigranular granite, indicating that crystallization pressure may have been lower than 200 MPa for the granite.
Resumo:
Olkiluoto Island is situated in the northern Baltic Sea, near the southwestern coast of Finland, and is the proposed location of a spent nuclear fuel repository. This study examined Holocene palaeoseismicity in the Olkiluoto area and in the surrounding sea areas by computer simulations together with acoustic-seismic, sedimentological and dating methods. The most abundant rock type on the island is migmatic mica gneiss, intruded by tonalites, granodiorites and granites. The surrounding Baltic Sea seabed consists of Palaeoproterozoic crystalline bedrock, which is to a great extent covered by younger Mesoproterozoic sedimentary rocks. The area contains several ancient deep-seated fracture zones that divide it into bedrock blocks. The response of bedrock at the Olkiluoto site was modelled considering four future ice-age scenarios. Each scenario produced shear displacements of fractures with different times of occurrence and varying recovery rates. Generally, the larger the maximum ice load, the larger were the permanent shear displacements. For a basic case, the maximum shear displacements were a few centimetres at the proposed nuclear waste repository level, at proximately 500 m b.s.l. High-resolution, low-frequency echo-sounding was used to examine the Holocene submarine sedimentary structures and possible direct and indirect indicators of palaeoseismic activity in the northern Baltic Sea. Echo-sounding profiles of Holocene submarine sediments revealed slides and slumps, normal faults, debris flows and turbidite-type structures. The profiles also showed pockmarks and other structures related to gas or groundwater seepages, which might be related to fracture zone activation. Evidence of postglacial reactivation in the study area was derived from the spatial occurrence of some of the structures, especial the faults and the seepages, in the vicinity of some old bedrock fracture zones. Palaeoseismic event(s) (a single or several events) in the Olkiluoto area were dated and the palaeoenvironment was characterized using palaeomagnetic, biostratigraphical and lithostratigraphical methods, enhancing the reliability of the chronology. Combined lithostratigraphy, biostratigraphy and palaeomagnetic stratigraphy revealed an age estimation of 10 650 to 10 200 cal. years BP for the palaeoseismic event(s). All Holocene sediment faults in the northern Baltic Sea occur at the same stratigraphical level, the age of which is estimated at 10 700 cal. years BP (9500 radiocarbon years BP). Their movement is suggested to have been triggered by palaeoseismic event(s) when the Late Weichselian ice sheet was retreating from the site and bedrock stresses were released along the bedrock fracture zones. Since no younger or repeated traces of seismic events were found, it corroborates the suggestion that the major seismic activity occurred within a short time during and after the last deglaciation. The origin of the gas/groundwater seepages remains unclear. Their reflections in the echo-sounding profiles imply that part of the gas is derived from the organic-bearing Litorina and modern gyttja clays. However, at least some of the gas is derived from the bedrock. Additional information could be gained by pore water analysis from the pockmarks. Information on postglacial fault activation and possible gas and/or fluid discharges under high hydraulic heads has relevance in evaluating the safety assessment of a planned spent nuclear fuel repository in the region.
Resumo:
This thesis studies homogeneous classes of complete metric spaces. Over the past few decades model theory has been extended to cover a variety of nonelementary frameworks. Shelah introduced the abstact elementary classes (AEC) in the 1980s as a common framework for the study of nonelementary classes. Another direction of extension has been the development of model theory for metric structures. This thesis takes a step in the direction of combining these two by introducing an AEC-like setting for studying metric structures. To find balance between generality and the possibility to develop stability theoretic tools, we work in a homogeneous context, thus extending the usual compact approach. The homogeneous context enables the application of stability theoretic tools developed in discrete homogeneous model theory. Using these we prove categoricity transfer theorems for homogeneous metric structures with respect to isometric isomorphisms. We also show how generalized isomorphisms can be added to the class, giving a model theoretic approach to, e.g., Banach space isomorphisms or operator approximations. The novelty is the built-in treatment of these generalized isomorphisms making, e.g., stability up to perturbation the natural stability notion. With respect to these generalized isomorphisms we develop a notion of independence. It behaves well already for structures which are omega-stable up to perturbation and coincides with the one from classical homogeneous model theory over saturated enough models. We also introduce a notion of isolation and prove dominance for it.
Resumo:
This study of the Finns at the International Lenin School (ILS) reflects history of the Soviet Union during Stalin's era, history of the Communist International (Comintern) as well as history of Finnish communism. The life span of the ILS (1926-1938) matches up with creating and establishing the power structures of Stalinism. Both the ILS and Finnish Communism in the USSR became casualties of the Great Terror (1937-1938). After the WW2, however, the Soviet education was appreciated inside the Communist Party of Finland (CPF). If Finland would have become People's Democracy, the former ILS students would have composed the inner circle of the new "democratic" government. The Finnish teachers of the ILS were leaders of the CPF that was headquartered in Moscow. At the ILS studied in total 141 Finnish communists. The purpose of the ILS was to educate the communist parties' leading stratum of functionaries. They were supposed to internalize current values, methods and discipline of the Bolsheviks. This study evaluates the effects of the total school experience on the Finns that often ended in another total institution in Finland: prison. The curricula of the ILS consisted of theory of Marxism-Leninism, party history, political economics and themes of campaigns of Stalinism. The ILS year included participation in Bolshevik party life and practical work. During summer excursions (praktikas) the students could acquaint themselves with building of socialism in the Soviet Republics. At the ILS, intention to ideological moulding was not hidden. The students were supposed to adopt the Stalinist identity of the professional revolutionaries of the era. The ILS was saturated with ideology and propaganda. This study analyzes especially uses of history as vehicle of ideological standardisation and as instrument of power. Stalin contributed personally to shortcomings of history writing of the communist party. Later he supervised writing of the inclusive handbook of communism, "History of the All-Union Communist Party. Short Course". Special attention will be paid to the effects of Stalin's intervention at the ILS and inside the CPF. The life of the Finns at the ILS and outside the school is described at grass roots. The dividing line between personal and political is analyzed by charting emotional, intimate and bodily experiences of the Finns of the ILS. The fates of the ILS Finns after the studying or teaching period in Moscow are explored in detail. The protagonist among the teachers is Yrjö Sirola that was called "father of the CPF cadres". The Finnish ILS teachers and the formed students that had remained in the USSR were most severely hit by the Great Terror. The Soviet education had most importance in Finland of post WW2 period. The training at the ILS, however, did not contribute to revolution in Finland. The main heading of the study, "A Short Course of Stalinism", crystallises interpretation of the ILS as seat of learning of ideological unity of Stalinism. On the other hand, the title includes a statement of incompleteness of the Stalinist education if the schooling at the ILS had remained in one year.
Resumo:
Lipid analysis is commonly performed by gas chromatography (GC) in laboratory conditions. Spectroscopic techniques, however, are non-destructive and can be implemented noninvasively in vivo. Excess fat (triglycerides) in visceral adipose tissue and liver is known predispose to metabolic abnormalities, collectively known as the metabolic syndrome. Insulin resistance is the likely cause with diets high in saturated fat known to impair insulin sensitivity. Tissue triglyceride composition has been used as marker of dietary intake but it can also be influenced by tissue specific handling of fatty acids. Recent studies have shown that adipocyte insulin sensitivity correlates positively with their saturated fat content, contradicting the common view of dietary effects. A better understanding of factors affecting tissue triglyceride composition is needed to provide further insights into tissue function in lipid metabolism. In this thesis two spectroscopic techniques were developed for in vitro and in vivo analysis of tissue triglyceride composition. In vitro studies (Study I) used infrared spectroscopy (FTIR), a fast and cost effective analytical technique well suited for multivariate analysis. Infrared spectra are characterized by peak overlap leading to poorly resolved absorbances and limited analytical performance. In vivo studies (Studies II, III and IV) used proton magnetic resonance spectroscopy (1H-MRS), an established non-invasive clinical method for measuring metabolites in vivo. 1H-MRS has been limited in its ability to analyze triglyceride composition due to poorly resolved resonances. Using an attenuated total reflection accessory, we were able to obtain pure triglyceride infrared spectra from adipose tissue biopsies. Using multivariate curve resolution (MCR), we were able to resolve the overlapping double bond absorbances of monounsaturated fat and polyunsaturated fat. MCR also resolved the isolated trans double bond and conjugated linoleic acids from an overlapping background absorbance. Using oil phantoms to study the effects of different fatty acid compositions on the echo time behaviour of triglycerides, it was concluded that the use of long echo times improved peak separation with T2 weighting having a negligible impact. It was also discovered that the echo time behaviour of the methyl resonance of omega-3 fats differed from other fats due to characteristic J-coupling. This novel insight could be used to detect omega-3 fats in human adipose tissue in vivo at very long echo times (TE = 470 and 540 ms). A comparison of 1H-MRS of adipose tissue in vivo and GC of adipose tissue biopsies in humans showed that long TE spectra resulted in improved peak fitting and better correlations with GC data. The study also showed that calculation of fatty acid fractions from 1H-MRS data is unreliable and should not be used. Omega-3 fatty acid content derived from long TE in vivo spectra (TE = 540 ms) correlated with total omega-3 fatty acid concentration measured by GC. The long TE protocol used for adipose tissue studies was subsequently extended to the analysis of liver fat composition. Respiratory triggering and long TE resulted in spectra with the olefinic and tissue water resonances resolved. Conversion of the derived unsaturation to double bond content per fatty acid showed that the results were in accordance with previously published gas chromatography data on liver fat composition. In patients with metabolic syndrome, liver fat was found to be more saturated than subcutaneous or visceral adipose tissue. The higher saturation observed in liver fat may be a result of a higher rate of de-novo-lipogenesis in liver than in adipose tissue. This thesis has introduced the first non-invasive method for determining adipose tissue omega-3 fatty acid content in humans in vivo. The methods introduced here have also shown that liver fat is more saturated than adipose tissue fat.
Resumo:
For achieving efficient fusion energy production, the plasma-facing wall materials of the fusion reactor should ensure long time operation. In the next step fusion device, ITER, the first wall region facing the highest heat and particle load, i.e. the divertor area, will mainly consist of tiles based on tungsten. During the reactor operation, the tungsten material is slowly but inevitably saturated with tritium. Tritium is the relatively short-lived hydrogen isotope used in the fusion reaction. The amount of tritium retained in the wall materials should be minimized and its recycling back to the plasma must be unrestrained, otherwise it cannot be used for fueling the plasma. A very expensive and thus economically not viable solution is to replace the first walls quite often. A better solution is to heat the walls to temperatures where tritium is released. Unfortunately, the exact mechanisms of hydrogen release in tungsten are not known. In this thesis both experimental and computational methods have been used for studying the release and retention of hydrogen in tungsten. The experimental work consists of hydrogen implantations into pure polycrystalline tungsten, the determination of the hydrogen concentrations using ion beam analyses (IBA) and monitoring the out-diffused hydrogen gas with thermodesorption spectrometry (TDS) as the tungsten samples are heated at elevated temperatures. Combining IBA methods with TDS, the retained amount of hydrogen is obtained as well as the temperatures needed for the hydrogen release. With computational methods the hydrogen-defect interactions and implantation-induced irradiation damage can be examined at the atomic level. The method of multiscale modelling combines the results obtained from computational methodologies applicable at different length and time scales. Electron density functional theory calculations were used for determining the energetics of the elementary processes of hydrogen in tungsten, such as diffusivity and trapping to vacancies and surfaces. Results from the energetics of pure tungsten defects were used in the development of an classical bond-order potential for describing the tungsten defects to be used in molecular dynamics simulations. The developed potential was utilized in determination of the defect clustering and annihilation properties. These results were further employed in binary collision and rate theory calculations to determine the evolution of large defect clusters that trap hydrogen in the course of implantation. The computational results for the defect and trapped hydrogen concentrations were successfully compared with the experimental results. With the aforedescribed multiscale analysis the experimental results within this thesis and found in the literature were explained both quantitatively and qualitatively.
Resumo:
Work capacity assessment meeting as a decision-making situation of a multi-professional team a study on interaction and patient participation Multi-professional working has become an increasingly popular method of work in social and health care. The introduction of the viewpoints of several professionals is seen as a way to enhance the openness and quality of decision-making. However, so far relatively few study results are available on the implementation of this method in actual operations. This study examines one work method, a work capacity assessment meeting, along with medical certificates B and their enclosures written by the doctor to the patient after a meeting. After the theoretical and methodological chapter, providing background information, the study describes the structure of the meeting and the medical certificate as a constructive factor. This is followed by a discussion on the manner of assessing the various domains of the patient s functional capacity and the decision-making based on the assessed factors. Next, the study moves on to examine the effect of patient involvements on the conclusions and decisions that professionals make at the meeting. In conclusion, the study looks into how the voices of the professionals and the customer are transferred to the medical certificate. The material of the study consists of 11 meetings recorded on video, of which eight are work capacity assessment meetings and three are rehabilitation examination meetings. The first type of meeting is attended by a patient and a number of professionals, while the latter is attended only by the professionals. All the patients, whose cases are discussed in the work capacity assessment meetings, have a musculoskeletal disorder, while the rehabilitation meetings are related to patients who all also have some additional problem. The study material also consists of seven medical certificates B, written after a work capacity assessment meeting. For the most part, the material has been collected by the conversation analysis method. Moreover, also discourse analysis and a rhetorical approach were used. By using conversation analysis, it is possible to study closely how interaction is built up at the meeting and to examine how the actors implement their institutional assessment tasks in a co-operation that takes its form turn by turn. The four main findings of the study are as follows: firstly, the meeting is structured to a great extent on the basis of the medical certificate form to various phases of the meeting and the headings of the certificate are seen as communicative affordances at the meeting, directed primarily to the professionals that have assessed the patient s work capacity with various tests. The medical certificate is the ethno-method of the doctor acting as the chairman of the meeting that functions in two directions: it constructs the meeting and constitutes the task of the professionals as they produce contents for it. Secondly, the study describes the ways that are used to assess the different domains of the patient s work capacity, how they are described at the meeting and how a decision is taken when the assessment information has been saturated in the opinion of the team. Thirdly, the study brings up ways, with which the patient can influence the conclusions and decisions made by the professionals at the meeting. The study showed that the patient can affect the preconditions of his or her own future and wellbeing. Fourthly, the study describes how the wealth of expressions at the meeting is transferred to the certificate as an argumentative micro-cosmos, where the patient is classified to be recommended for rehabilitation or disability pension. An important finding is also how objective and subjective information and the voices of actors at the meeting are transferred to the statement in a strategic and intentional manner, with an orientation to the decision that will be taken at the insurance institution. The study results can be utilized in the training of professionals and in developing the operations of organisations performing the assessment of the work capacity of people suffering from musculoskeletal disorders.
Resumo:
Lipid analysis is commonly performed by gas chromatography (GC) in laboratory conditions. Spectroscopic techniques, however, are non-destructive and can be implemented noninvasively in vivo. Excess fat (triglycerides) in visceral adipose tissue and liver is known predispose to metabolic abnormalities, collectively known as the metabolic syndrome. Insulin resistance is the likely cause with diets high in saturated fat known to impair insulin sensitivity. Tissue triglyceride composition has been used as marker of dietary intake but it can also be influenced by tissue specific handling of fatty acids. Recent studies have shown that adipocyte insulin sensitivity correlates positively with their saturated fat content, contradicting the common view of dietary effects. A better understanding of factors affecting tissue triglyceride composition is needed to provide further insights into tissue function in lipid metabolism. In this thesis two spectroscopic techniques were developed for in vitro and in vivo analysis of tissue triglyceride composition. In vitro studies (Study I) used infrared spectroscopy (FTIR), a fast and cost effective analytical technique well suited for multivariate analysis. Infrared spectra are characterized by peak overlap leading to poorly resolved absorbances and limited analytical performance. In vivo studies (Studies II, III and IV) used proton magnetic resonance spectroscopy (1H-MRS), an established non-invasive clinical method for measuring metabolites in vivo. 1H-MRS has been limited in its ability to analyze triglyceride composition due to poorly resolved resonances. Using an attenuated total reflection accessory, we were able to obtain pure triglyceride infrared spectra from adipose tissue biopsies. Using multivariate curve resolution (MCR), we were able to resolve the overlapping double bond absorbances of monounsaturated fat and polyunsaturated fat. MCR also resolved the isolated trans double bond and conjugated linoleic acids from an overlapping background absorbance. Using oil phantoms to study the effects of different fatty acid compositions on the echo time behaviour of triglycerides, it was concluded that the use of long echo times improved peak separation with T2 weighting having a negligible impact. It was also discovered that the echo time behaviour of the methyl resonance of omega-3 fats differed from other fats due to characteristic J-coupling. This novel insight could be used to detect omega-3 fats in human adipose tissue in vivo at very long echo times (TE = 470 and 540 ms). A comparison of 1H-MRS of adipose tissue in vivo and GC of adipose tissue biopsies in humans showed that long TE spectra resulted in improved peak fitting and better correlations with GC data. The study also showed that calculation of fatty acid fractions from 1H-MRS data is unreliable and should not be used. Omega-3 fatty acid content derived from long TE in vivo spectra (TE = 540 ms) correlated with total omega-3 fatty acid concentration measured by GC. The long TE protocol used for adipose tissue studies was subsequently extended to the analysis of liver fat composition. Respiratory triggering and long TE resulted in spectra with the olefinic and tissue water resonances resolved. Conversion of the derived unsaturation to double bond content per fatty acid showed that the results were in accordance with previously published gas chromatography data on liver fat composition. In patients with metabolic syndrome, liver fat was found to be more saturated than subcutaneous or visceral adipose tissue. The higher saturation observed in liver fat may be a result of a higher rate of de-novo-lipogenesis in liver than in adipose tissue. This thesis has introduced the first non-invasive method for determining adipose tissue omega-3 fatty acid content in humans in vivo. The methods introduced here have also shown that liver fat is more saturated than adipose tissue fat.
Resumo:
In the study, two upper elementary school health education textbooks were investigated. The purpose of the study was to examine the health discourses and subject- and reader positions constructed in text. Theoretically, the study is based on poststructuralist thought and critical sociology of health promotion. Methodologically, it draws mainly on critical lingvistics and new rhetorics. Textbooks were understood as informative, argumentative and persuasive texts in which different lexical and grammatical methods to secure the readers´ responsiveness were utilized. Also, the relations of the text to wider genres, social situations, structures, institutions and practices were investigated. The interpersonal and ideational dimensions of the texts were analysed with the aim of finding out the kinds of identities for and relations between the speaker and the ideal reader were constructed and the kinds of representations of health and the world around were produced in the textbooks. Multiple discourses of health, and genres and styles characteristic for many kinds of contexts and situations were found. The identities of and the relationships between the speaker and the ideal reader of the text were also multiple and changing. The text echoes both biomedical health discourse emphasizing prevention of illness and holistic discourse emphasizing personal welfare, fulfillment and happiness. Furthermore, traces for example from development psychological, ecological and civilization critical discourses were perceived. Formal scientific genre was found to be mixed with informal chatting imitating close and equal relationship between participants characteristic for advertisements and other persuasive texts, and obliging and ordering expression typical for school context and other situations where the relationship between participants is unequal and distant. The ideal reader of the text can be characterized as adolescent living in the world saturated by advertising and media. He or she is interested in the life of the celebrities, and is interested rather in her or his appearance, image and short-term enjoyment than health and long-term welfare. In the textbooks, healthy way of life is attempted to create a product which appeals to the values and interests of the imaginary public, the ideal reader of the text. Marketing healthy choices tend to reproduce stereotyped ideas of happiness, good life, youth and sex. Furthermore, individualizing approach mixed with wide definition of health legitimizes easily an erraneous impression of health, beauty and success being personal achievements dependent only on attitudes and competences.
Resumo:
The Earth s climate is a highly dynamic and complex system in which atmospheric aerosols have been increasingly recognized to play a key role. Aerosol particles affect the climate through a multitude of processes, directly by absorbing and reflecting radiation and indirectly by changing the properties of clouds. Because of the complexity, quantification of the effects of aerosols continues to be a highly uncertain science. Better understanding of the effects of aerosols requires more information on aerosol chemistry. Before the determination of aerosol chemical composition by the various available analytical techniques, aerosol particles must be reliably sampled and prepared. Indeed, sampling is one of the most challenging steps in aerosol studies, since all available sampling techniques harbor drawbacks. In this study, novel methodologies were developed for sampling and determination of the chemical composition of atmospheric aerosols. In the particle-into-liquid sampler (PILS), aerosol particles grow in saturated water vapor with further impaction and dissolution in liquid water. Once in water, the aerosol sample can then be transported and analyzed by various off-line or on-line techniques. In this study, PILS was modified and the sampling procedure was optimized to obtain less altered aerosol samples with good time resolution. A combination of denuders with different coatings was tested to adsorb gas phase compounds before PILS. Mixtures of water with alcohols were introduced to increase the solubility of aerosols. Minimum sampling time required was determined by collecting samples off-line every hour and proceeding with liquid-liquid extraction (LLE) and analysis by gas chromatography-mass spectrometry (GC-MS). The laboriousness of LLE followed by GC-MS analysis next prompted an evaluation of solid-phase extraction (SPE) for the extraction of aldehydes and acids in aerosol samples. These two compound groups are thought to be key for aerosol growth. Octadecylsilica, hydrophilic-lipophilic balance (HLB), and mixed phase anion exchange (MAX) were tested as extraction materials. MAX proved to be efficient for acids, but no tested material offered sufficient adsorption for aldehydes. Thus, PILS samples were extracted only with MAX to guarantee good results for organic acids determined by liquid chromatography-mass spectrometry (HPLC-MS). On-line coupling of SPE with HPLC-MS is relatively easy, and here on-line coupling of PILS with HPLC-MS through the SPE trap produced some interesting data on relevant acids in atmospheric aerosol samples. A completely different approach to aerosol sampling, namely, differential mobility analyzer (DMA)-assisted filter sampling, was employed in this study to provide information about the size dependent chemical composition of aerosols and understanding of the processes driving aerosol growth from nano-size clusters to climatically relevant particles (>40 nm). The DMA was set to sample particles with diameters of 50, 40, and 30 nm and aerosols were collected on teflon or quartz fiber filters. To clarify the gas-phase contribution, zero gas-phase samples were collected by switching off the DMA every other 15 minutes. Gas-phase compounds were adsorbed equally well on both types of filter, and were found to contribute significantly to the total compound mass. Gas-phase adsorption is especially significant during the collection of nanometer-size aerosols and needs always to be taken into account. Other aims of this study were to determine the oxidation products of β-caryophyllene (the major sesquiterpene in boreal forest) in aerosol particles. Since reference compounds are needed for verification of the accuracy of analytical measurements, three oxidation products of β-caryophyllene were synthesized: β-caryophyllene aldehyde, β-nocaryophyllene aldehyde, and β-caryophyllinic acid. All three were identified for the first time in ambient aerosol samples, at relatively high concentrations, and their contribution to the aerosol mass (and probably growth) was concluded to be significant. Methodological and instrumental developments presented in this work enable fuller understanding of the processes behind biogenic aerosol formation and provide new tools for more precise determination of biosphere-atmosphere interactions.