18 resultados para RANDOM ENERGY-MODEL
em Helda - Digital Repository of University of Helsinki
Resumo:
Forest management is facing new challenges under climate change. By adjusting thinning regimes, conventional forest management can be adapted to various objectives of utilization of forest resources, such as wood quality, forest bioenergy, and carbon sequestration. This thesis aims to develop and apply a simulation-optimization system as a tool for an interdisciplinary understanding of the interactions between wood science, forest ecology, and forest economics. In this thesis, the OptiFor software was developed for forest resources management. The OptiFor simulation-optimization system integrated the process-based growth model PipeQual, wood quality models, biomass production and carbon emission models, as well as energy wood and commercial logging models into a single optimization model. Osyczka s direct and random search algorithm was employed to identify optimal values for a set of decision variables. The numerical studies in this thesis broadened our current knowledge and understanding of the relationships between wood science, forest ecology, and forest economics. The results for timber production show that optimal thinning regimes depend on site quality and initial stand characteristics. Taking wood properties into account, our results show that increasing the intensity of thinning resulted in lower wood density and shorter fibers. The addition of nutrients accelerated volume growth, but lowered wood quality for Norway spruce. Integrating energy wood harvesting into conventional forest management showed that conventional forest management without energy wood harvesting was still superior in sparse stands of Scots pine. Energy wood from pre-commercial thinning turned out to be optimal for dense stands. When carbon balance is taken into account, our results show that changing carbon assessment methods leads to very different optimal thinning regimes and average carbon stocks. Raising the carbon price resulted in longer rotations and a higher mean annual increment, as well as a significantly higher average carbon stock over the rotation.
Resumo:
Costs of purchasing new piglets and of feeding them until slaughter are the main variable expenditures in pig fattening. They both depend on slaughter intensity, the nature of feeding patterns and the technological constraints of pig fattening, such as genotype. Therefore, it is of interest to examine the effect of production technology and changes in input and output prices on feeding and slaughter decisions. This study examines the problem by using a dynamic programming model that links genetic characteristics of a pig to feeding decisions and the timing of slaughter and takes into account how these jointly affect the quality-adjusted value of a carcass. The model simulates the growth mechanism of a pig under optional feeding and slaughter patterns and then solves the optimal feeding and slaughter decisions recursively. The state of nature and the genotype of a pig are known in the analysis. The main contribution of this study is the dynamic approach that explicitly takes into account carcass quality while simultaneously optimising feeding and slaughter decisions. The method maximises the internal rate of return to the capacity unit. Hence, the results can have vital impact on competitiveness of pig production, which is known to be quite capital-intensive. The results suggest that producer can significantly benefit from improvements in the pig's genotype, because they improve efficiency of pig production. The annual benefits from obtaining pigs of improved genotype can be more than €20 per capacity unit. The annual net benefits of animal breeding to pig farms can also be considerable. Animals of improved genotype can reach optimal slaughter maturity quicker and produce leaner meat than animals of poor genotype. In order to fully utilise the benefits of animal breeding, the producer must adjust feeding and slaughter patterns on the basis of genotype. The results suggest that the producer can benefit from flexible feeding technology. The flexible feeding technology segregates pigs into groups according to their weight, carcass leanness, genotype and sex and thereafter optimises feeding and slaughter decisions separately for these groups. Typically, such a technology provides incentives to feed piglets with protein-rich feed such that the genetic potential to produce leaner meat is fully utilised. When the pig approaches slaughter maturity, the share of protein-rich feed in the diet gradually decreases and the amount of energy-rich feed increases. Generally, the optimal slaughter weight is within the weight range that pays the highest price per kilogram of pig meat. The optimal feeding pattern and the optimal timing of slaughter depend on price ratios. Particularly, an increase in the price of pig meat provides incentives to increase the growth rates up to the pig's biological maximum by increasing the amount of energy in the feed. Price changes and changes in slaughter premium can also have large income effects. Key words: barley, carcass composition, dynamic programming, feeding, genotypes, lean, pig fattening, precision agriculture, productivity, slaughter weight, soybeans
Resumo:
Digital elevation models (DEMs) have been an important topic in geography and surveying sciences for decades due to their geomorphological importance as the reference surface for gravita-tion-driven material flow, as well as the wide range of uses and applications. When DEM is used in terrain analysis, for example in automatic drainage basin delineation, errors of the model collect in the analysis results. Investigation of this phenomenon is known as error propagation analysis, which has a direct influence on the decision-making process based on interpretations and applications of terrain analysis. Additionally, it may have an indirect influence on data acquisition and the DEM generation. The focus of the thesis was on the fine toposcale DEMs, which are typically represented in a 5-50m grid and used in the application scale 1:10 000-1:50 000. The thesis presents a three-step framework for investigating error propagation in DEM-based terrain analysis. The framework includes methods for visualising the morphological gross errors of DEMs, exploring the statistical and spatial characteristics of the DEM error, making analytical and simulation-based error propagation analysis and interpreting the error propagation analysis results. The DEM error model was built using geostatistical methods. The results show that appropriate and exhaustive reporting of various aspects of fine toposcale DEM error is a complex task. This is due to the high number of outliers in the error distribution and morphological gross errors, which are detectable with presented visualisation methods. In ad-dition, the use of global characterisation of DEM error is a gross generalisation of reality due to the small extent of the areas in which the decision of stationarity is not violated. This was shown using exhaustive high-quality reference DEM based on airborne laser scanning and local semivariogram analysis. The error propagation analysis revealed that, as expected, an increase in the DEM vertical error will increase the error in surface derivatives. However, contrary to expectations, the spatial au-tocorrelation of the model appears to have varying effects on the error propagation analysis depend-ing on the application. The use of a spatially uncorrelated DEM error model has been considered as a 'worst-case scenario', but this opinion is now challenged because none of the DEM derivatives investigated in the study had maximum variation with spatially uncorrelated random error. Sig-nificant performance improvement was achieved in simulation-based error propagation analysis by applying process convolution in generating realisations of the DEM error model. In addition, typology of uncertainty in drainage basin delineations is presented.
Resumo:
Planar curves arise naturally as interfaces between two regions of the plane. An important part of statistical physics is the study of lattice models. This thesis is about the interfaces of 2D lattice models. The scaling limit is an infinite system limit which is taken by letting the lattice mesh decrease to zero. At criticality, the scaling limit of an interface is one of the SLE curves (Schramm-Loewner evolution), introduced by Oded Schramm. This family of random curves is parametrized by a real variable, which determines the universality class of the model. The first and the second paper of this thesis study properties of SLEs. They contain two different methods to study the whole SLE curve, which is, in fact, the most interesting object from the statistical physics point of view. These methods are applied to study two symmetries of SLE: reversibility and duality. The first paper uses an algebraic method and a representation of the Virasoro algebra to find common martingales to different processes, and that way, to confirm the symmetries for polynomial expected values of natural SLE data. In the second paper, a recursion is obtained for the same kind of expected values. The recursion is based on stationarity of the law of the whole SLE curve under a SLE induced flow. The third paper deals with one of the most central questions of the field and provides a framework of estimates for describing 2D scaling limits by SLE curves. In particular, it is shown that a weak estimate on the probability of an annulus crossing implies that a random curve arising from a statistical physics model will have scaling limits and those will be well-described by Loewner evolutions with random driving forces.
Resumo:
Molecular motors are proteins that convert chemical energy into mechanical work. The viral packaging ATPase P4 is a hexameric molecular motor that translocates RNA into preformed viral capsids. P4 belongs to the ubiquitous class of hexameric helicases. Although its structure is known, the mechanism of RNA translocation remains elusive. Here we present a detailed kinetic study of nucleotide binding, hydrolysis, and product release by P4. We propose a stochastic-sequential cooperative model to describe the coordination of ATP hydrolysis within the hexamer. In this model the apparent cooperativity is a result of hydrolysis stimulation by ATP and RNA binding to neighboring subunits rather than cooperative nucleotide binding. Simultaneous interaction of neighboring subunits with RNA makes the otherwise random hydrolysis sequential and processive. Further, we use hydrogen/deuterium exchange detected by high resolution mass spectrometry to visualize P4 conformational dynamics during the catalytic cycle. Concerted changes of exchange kinetics reveal a cooperative unit that dynamically links ATP binding sites and the central RNA binding channel. The cooperative unit is compatible with the structure-based model in which translocation is effected by conformational changes of a limited protein region. Deuterium labeling also discloses the transition state associated with RNA loading which proceeds via opening of the hexameric ring. Hydrogen/deuterium exchange is further used to delineate the interactions of the P4 hexamer with the viral procapsid. P4 associates with the procapsid via its C-terminal face. The interactions stabilize subunit interfaces within the hexamer. The conformation of the virus-bound hexamer is more stable than the hexamer in solution, which is prone to spontaneous ring openings. We propose that the stabilization within the viral capsid increases the packaging processivity and confers selectivity during RNA loading. Finally, we use single molecule techniques to characterize P4 translocation along RNA. While the P4 hexamer encloses RNA topologically within the central channel, it diffuses randomly along the RNA. In the presence of ATP, unidirectional net movement is discernible in addition to the stochastic motion. The diffusion is hindered by activation energy barriers that depend on the nucleotide binding state. The results suggest that P4 employs an electrostatic clutch instead of cycling through stable, discrete, RNA binding states during translocation. Conformational changes coupled to ATP hydrolysis modify the electrostatic potential inside the central channel, which in turn biases RNA motion in one direction. Implications of the P4 model for other hexameric molecular motors are discussed.
Resumo:
Mitochondrial diseases are caused by disturbances of the energy metabolism. The disorders range from severe childhood neurological diseases to muscle diseases of adults. Recently, mitochondrial dysfunction has also been found in Parkinson s disease, diabetes, certain types of cancer and premature aging. Mitochondria are the power plants of the cell but they also participate in the regulation of cell growth, signaling and cell death. Mitochondria have their own genetic material, mtDNA, which contains the genetic instructions for cellular respiration. Single cell may host thousands of mitochondria and several mtDNA molecules may reside inside single mitochondrion. All proteins needed for mtDNA maintenance are, however, encoded by the nuclear genome, and therefore, mutations of the corresponding genes can also cause mitochondrial disease. We have here studied the function of mitochondrial helicase Twinkle. Our research group has previously identified nuclear Twinkle gene mutations underlying an inherited adult-onset disorder, progressive external ophthalmoplegia (PEO). Characteristic for the PEO disease is the accumulation of multiple mtDNA deletions in tissues such as the muscle and brain. In this study, we have shown that Twinkle helicase is essential for mtDNA maintenance and that it is capable of regulating mtDNA copy number. Our results support the role of Twinkle as the mtDNA replication helicase. No cure is available for mitochondrial disease. Good disease models are needed for studies of the cause of disease and its progression and for treatment trials. Such disease model, which replicates the key features of the PEO disease, has been generated in this study. The model allows for careful inspection of how Twinkle mutations lead to mtDNA deletions and further causes the PEO disease. This model will be utilized in a range of studies addressing the delay of the disease onset and progression and in subsequent treatment trials. In conclusion, in this thesis fundamental knowledge of the function of the mitochondrial helicase Twinkle was gained. In addition, the first model for adult-onset mitochondrial disease was generated.
Resumo:
Cosmological inflation is the dominant paradigm in explaining the origin of structure in the universe. According to the inflationary scenario, there has been a period of nearly exponential expansion in the very early universe, long before the nucleosynthesis. Inflation is commonly considered as a consequence of some scalar field or fields whose energy density starts to dominate the universe. The inflationary expansion converts the quantum fluctuations of the fields into classical perturbations on superhorizon scales and these primordial perturbations are the seeds of the structure in the universe. Moreover, inflation also naturally explains the high degree of homogeneity and spatial flatness of the early universe. The real challenge of the inflationary cosmology lies in trying to establish a connection between the fields driving inflation and theories of particle physics. In this thesis we concentrate on inflationary models at scales well below the Planck scale. The low scale allows us to seek for candidates for the inflationary matter within extensions of the Standard Model but typically also implies fine-tuning problems. We discuss a low scale model where inflation is driven by a flat direction of the Minimally Supersymmetric Standard Model. The relation between the potential along the flat direction and the underlying supergravity model is studied. The low inflationary scale requires an extremely flat potential but we find that in this particular model the associated fine-tuning problems can be solved in a rather natural fashion in a class of supergravity models. For this class of models, the flatness is a consequence of the structure of the supergravity model and is insensitive to the vacuum expectation values of the fields that break supersymmetry. Another low scale model considered in the thesis is the curvaton scenario where the primordial perturbations originate from quantum fluctuations of a curvaton field, which is different from the fields driving inflation. The curvaton gives a negligible contribution to the total energy density during inflation but its perturbations become significant in the post-inflationary epoch. The separation between the fields driving inflation and the fields giving rise to primordial perturbations opens up new possibilities to lower the inflationary scale without introducing fine-tuning problems. The curvaton model typically gives rise to relatively large level of non-gaussian features in the statistics of primordial perturbations. We find that the level of non-gaussian effects is heavily dependent on the form of the curvaton potential. Future observations that provide more accurate information of the non-gaussian statistics can therefore place constraining bounds on the curvaton interactions.
Resumo:
Polar Regions are an energy sink of the Earth system, as the Sun rays do not reach the Poles for half of the year, and hit them only at very low angles for the other half of the year. In summer, solar radiation is the dominant energy source for the Polar areas, therefore even small changes in the surface albedo strongly affect the surface energy balance and, thus, the speed and amount of snow and ice melting. In winter, the main heat sources for the atmosphere are the cyclones approaching from lower latitudes, and the atmosphere-surface heat transfer takes place through turbulent mixing and longwave radiation, the latter dominated by clouds. The aim of this thesis is to improve the knowledge about the surface and atmospheric processes that control the surface energy budget over snow and ice, with particular focus on albedo during the spring and summer seasons, on horizontal advection of heat, cloud longwave forcing, and turbulent mixing during the winter season. The critical importance of a correct albedo representation in models is illustrated through the analysis of the causes for the errors in the surface and near-surface air temperature produced in a short-range numerical weather forecast by the HIRLAM model. Then, the daily and seasonal variability of snow and ice albedo have been examined by analysing field measurements of albedo, carried out in different environments. On the basis of the data analysis, simple albedo parameterizations have been derived, which can be implemented into thermodynamic sea ice models, as well as numerical weather prediction and climate models. Field measurements of radiation and turbulent fluxes over the Bay of Bothnia (Baltic Sea) also allowed examining the impact of a large albedo change during the melting season on surface energy and ice mass budgets. When high contrasts in surface albedo are present, as in the case of snow covered areas next to open water, the effect of the surface albedo heterogeneity on the downwelling solar irradiance under overcast condition is very significant, although it is usually not accounted for in single column radiative transfer calculations. To account for this effect, an effective albedo parameterization based on three-dimensional Monte Carlo radiative transfer calculations has been developed. To test a potentially relevant application of the effective albedo parameterization, its performance in the ground-based retrieval of cloud optical depth was illustrated. Finally, the factors causing the large variations of the surface and near-surface temperatures over the Central Arctic during winter were examined. The relative importance of cloud radiative forcing, turbulent mixing, and lateral heat advection on the Arctic surface temperature were quantified through the analysis of direct observations from Russian drifting ice stations, with the lateral heat advection calculated from reanalysis products.
Resumo:
We report a search for single top quark production with the CDF II detector using 2.1 fb-1 of integrated luminosity of pbar p collisions at sqrt{s}=1.96 TeV. The data selected consist of events characterized by large energy imbalance in the transverse plane and hadronic jets, and no identified electrons and muons, so the sample is enriched in W -> tau nu decays. In order to suppress backgrounds, additional kinematic and topological requirements are imposed through a neural network, and at least one of the jets must be identified as a b-quark jet. We measure an excess of signal-like events in agreement with the standard model prediction, but inconsistent with a model without single top quark production by 2.1 standard deviations (sigma), with a median expected sensitivity of 1.4 sigma. Assuming a top quark mass of 175 GeV/c2 and ascribing the excess to single top quark production, the cross section is measured to be 4.9+2.5-2.2(stat+syst)pb, consistent with measurements performed in independent datasets and with the standard model prediction.
Resumo:
We present the results of a search for supersymmetry with gauge-mediated breaking and $\NONE\to\gamma\Gravitino$ in the $\gamma\gamma$+missing transverse energy final state. In 2.6$\pm$0.2 \invfb of $p{\bar p}$ collisions at $\sqrt{s}$$=$1.96 TeV recorded by the CDF II detector we observe no candidate events, consistent with a standard model background expectation of 1.4$\pm$0.4 events. We set limits on the cross section at the 95% C.L. and place the world's best limit of 149\gevc on the \none mass at $\tau_{\tilde{\chi}_1^0}$$
Resumo:
We report on a search for the standard model Higgs boson produced in association with a $W$ or $Z$ boson in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV recorded by the CDF II experiment at the Tevatron in a data sample corresponding to an integrated luminosity of 2.1 fb$^{-1}$. We consider events which have no identified charged leptons, an imbalance in transverse momentum, and two or three jets where at least one jet is consistent with originating from the decay of a $b$ hadron. We find good agreement between data and predictions. We place 95% confidence level upper limits on the production cross section for several Higgs boson masses ranging from 110$\gevm$ to 150$\gevm$. For a mass of 115$\gevm$ the observed (expected) limit is 6.9 (5.6) times the standard model prediction.
Resumo:
We present a signature-based search for anomalous production of events containing a photon, two jets, of which at least one is identified as originating from a b quark, and missing transverse energy. The search uses data corresponding to 2.0/fb of integrated luminosity from p-pbar collisions at a center-of-mass energy of sqrt(s)=1.96 TeV, collected with the CDF II detector at the Fermilab Tevatron. From 6,697,466 events with a photon candidate with transverse energy ET> 25 GeV, we find 617 events with missing transverse energy > 25 GeV and two or more jets with ET> 15 GeV, at least one identified as originating from a b quark, versus an expectation of 607+- 113 events. Increasing the requirement on missing transverse energy to 50 GeV, we find 28 events versus an expectation of 30+-11 events. We find no indications of non-standard-model phenomena.
Resumo:
We present a search for standard model Higgs boson production in association with a W boson in proton-antiproton collisions at a center of mass energy of 1.96 TeV. The search employs data collected with the CDF II detector that correspond to an integrated luminosity of approximately 1.9 inverse fb. We select events consistent with a signature of a single charged lepton, missing transverse energy, and two jets. Jets corresponding to bottom quarks are identified with a secondary vertex tagging method, a jet probability tagging method, and a neural network filter. We use kinematic information in an artificial neural network to improve discrimination between signal and background compared to previous analyses. The observed number of events and the neural network output distributions are consistent with the standard model background expectations, and we set 95% confidence level upper limits on the production cross section times branching fraction ranging from 1.2 to 1.1 pb or 7.5 to 102 times the standard model expectation for Higgs boson masses from 110 to $150 GeV/c^2, respectively.
Resumo:
In a search for new phenomena in a signature suppressed in the standard model of elementary particles (SM), we compare the inclusive production of events containing a lepton, a photon, significant transverse momentum imbalance (MET), and a jet identified as containing a b-quark, to SM predictions. The search uses data produced in proton-antiproton collisions at 1.96 TeV corresponding to 1.9 fb-1 of integrated luminosity taken with the CDF detector at the Fermilab Tevatron. We find 28 lepton+photon+MET+b events versus an expectation of 31.0+4.1/-3.5 events. If we further require events to contain at least three jets and large total transverse energy, simulations predict that the largest SM source is top-quark pair production with an additional radiated photon, ttbar+photon. In the data we observe 16 ttbar+photon candidate events versus an expectation from SM sources of 11.2+2.3/-2.1. Assuming the difference between the observed number and the predicted non-top-quark total is due to SM top quark production, we estimate the ttg cross section to be 0.15 +- 0.08 pb.
Resumo:
We study the energy current in a model of heat conduction, first considered in detail by Casher and Lebowitz. The model consists of a one-dimensional disordered harmonic chain of n i.i.d. random masses, connected to their nearest neighbors via identical springs, and coupled at the boundaries to Langevin heat baths, with respective temperatures T_1 and T_n. Let EJ_n be the steady-state energy current across the chain, averaged over the masses. We prove that EJ_n \sim (T_1 - T_n)n^{-3/2} in the limit n \to \infty, as has been conjectured by various authors over the time. The proof relies on a new explicit representation for the elements of the product of associated transfer matrices.