37 resultados para Pulsed-Field
em Helda - Digital Repository of University of Helsinki
Resumo:
Standards have been placed to regulate the microbial and preservative contents to assure that foods are safe to the consumer. In a case of a food-related disease outbreak, it is crucial to be able to detect and identify quickly and accurately the cause of the disease. In addition, for every day control of food microbial and preservative contents, the detection methods must be easily performed for numerous food samples. In this present study, quicker alternative methods were studied for identification of bacteria by DNA fingerprinting. A flow cytometry method was developed as an alternative to pulsed-field gel electrophoresis, the golden method . DNA fragment sizing by an ultrasensitive flow cytometer was able to discriminate species and strains in a reproducible and comparable manner to pulsed-field gel electrophoresis. This new method was hundreds times faster and 200,000 times more sensitive. Additionally, another DNA fingerprinting identification method was developed based on single-enzyme amplified fragment length polymorphism (SE-AFLP). This method allowed the differentiation of genera, species, and strains of pathogenic bacteria of Bacilli, Staphylococci, Yersinia, and Escherichia coli. These fingerprinting patterns obtained by SE-AFLP were simpler and easier to analyze than those by the traditional amplified fragment length polymorphism by double enzyme digestion. Nisin (E234) is added as a preservative to different types of foods, especially dairy products, around the world. Various detection methods exist for nisin, but they lack in sensitivity, speed or specificity. In this present study, a sensitive nisin-induced green fluorescent protein (GFPuv) bioassay was developed using the Lactococcus lactis two-component signal system NisRK and the nisin-inducible nisA promoter. The bioassay was extremely sensitive with detection limit of 10 pg/ml in culture supernatant. In addition, it was compatible for quantification from various food matrices, such as milk, salad dressings, processed cheese, liquid eggs, and canned tomatoes. Wine has good antimicrobial properties due to its alcohol concentration, low pH, and organic content and therefore often assumed to be microbially safe to consume. Another aim of this thesis was to study the microbiota of wines returned by customers complaining of food-poisoning symptoms. By partial 16S rRNA gene sequence analysis, ribotyping, and boar spermatozoa motility assay, it was identified that one of the wines contained a Bacillus simplex BAC91, which produced a heat-stable substance toxic to the mitochondria of sperm cells. The antibacterial activity of wine was tested on the vegetative cells and spores of B. simplex BAC91, B. cereus type strain ATCC 14579 and cereulide-producing B. cereus F4810/72. Although the vegetative cells and spores of B. simplex BAC91 were sensitive to the antimicrobial effects of wine, the spores of B. cereus strains ATCC 14579 and F4810/72 stayed viable for at least 4 months. According to these results, Bacillus spp., more specifically spores, can be a possible risk to the wine consumer.
Resumo:
Staphylococcus aureus is one of the most important bacteria that cause disease in humans, and methicillin-resistant S. aureus (MRSA) has become the most commonly identified antibiotic-resistant pathogen in many parts of the world. MRSA rates have been stable for many years in the Nordic countries and the Netherlands with a low MRSA prevalence in Europe, but in the recent decades, MRSA rates have increased in those low-prevalence countries as well. MRSA has been established as a major hospital pathogen, but has also been found increasingly in long-term facilities (LTF) and in communities of persons with no connections to the health-care setting. In Finland, the annual number of MRSA isolates reported to the National Infectious Disease Register (NIDR) has constantly increased, especially outside the Helsinki metropolitan area. Molecular typing has revealed numerous outbreak strains of MRSA, some of which have previously been associated with community acquisition. In this work, data on MRSA cases notified to the NIDR and on MRSA strain types identified with pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and staphylococcal cassette chromosome mec (SCCmec) typing at the National Reference Laboratory (NRL) in Finland from 1997 to 2004 were analyzed. An increasing trend in MRSA incidence in Finland from 1997 to 2004 was shown. In addition, non-multi-drug resistant (NMDR) MRSA isolates, especially those resistant only to methicillin/oxacillin, showed an emerging trend. The predominant MRSA strains changed over time and place, but two internationally spread epidemic strains of MRSA, FIN-16 and FIN-21, were related to the increase detected most recently. Those strains were also one cause of the strikingly increasing invasive MRSA findings. The rise of MRSA strains with SCCmec types IV or V, possible community-acquired MRSA was also detected. With questionnaires, the diagnostic methods used for MRSA identification in Finnish microbiology laboratories and the number of MRSA screening specimens studied were reviewed. Surveys, which focused on the MRSA situation in long-term facilities in 2001 and on the background information of MRSA-positive persons in 2001-2003, were also carried out. The rates of MRSA and screening practices varied widely across geographic regions. Part of the NMDR MRSA strains could remain undetected in some laboratories because of insufficient diagnostic techniques used. The increasing proportion of elderly population carrying MRSA suggests that MRSA is an emerging problem in Finnish long-term facilities. Among the patients, 50% of the specimens were taken on a clinical basis, 43% on a screening basis after exposure to MRSA, 3% on a screening basis because of hospital contact abroad, and 4% for other reasons. In response to an outbreak of MRSA possessing a new genotype that occurred in a health care ward and in an associated nursing home of a small municipality in Northern Finland in autumn 2003, a point-prevalence survey was performed six months later. In the same study, the molecular epidemiology of MRSA and methicillin-sensitive S. aureus (MSSA) strains were also assessed, the results to the national strain collection compared, and the difficulties of MRSA screening with low-level oxacillin-resistant isolates encountered. The original MRSA outbreak in LTF, which consisted of isolates possessing a nationally new PFGE profile (FIN-22) and internationally rare MLST type (ST-27), was confined. Another previously unrecognized MRSA strain was found with additional screening, possibly indicating that current routine MRSA screening methods may be insufficiently sensitive for strains possessing low-level oxacillin resistance. Most of the MSSA strains found were genotypically related to the epidemic MRSA strains, but only a few of them had received the SCCmec element, and all those strains possessed the new SCCmec type V. In the second largest nursing home in Finland, the colonization of S. aureus and MRSA, and the role of screening sites along with broth enrichment culture on the sensitivity to detect S. aureus were studied. Combining the use of enrichment broth and perineal swabbing, in addition to nostrils and skin lesions swabbing, may be an alternative for throat swabs in the nursing home setting, especially when residents are uncooperative. Finally, in order to evaluate adequate phenotypic and genotypic methods needed for reliable laboratory diagnostics of MRSA, oxacillin disk diffusion and MIC tests to the cefoxitin disk diffusion method at both +35°C and +30°C, both with or without an addition of sodium chloride (NaCl) to the Müller Hinton test medium, and in-house PCR to two commercial molecular methods (the GenoType® MRSA test and the EVIGENETM MRSA Detection test) with different bacterial species in addition to S. aureus were compared. The cefoxitin disk diffusion method was superior to that of oxacillin disk diffusion and to the MIC tests in predicting mecA-mediated resistance in S. aureus when incubating at +35°C with or without the addition of NaCl to the test medium. Both the Geno Type® MRSA and EVIGENETM MRSA Detection tests are usable, accurate, cost-effective, and sufficiently fast methods for rapid MRSA confirmation from a pure culture.
Resumo:
Leuconostoc spp. are lactic acid bacteria (LAB) implicated in food spoilage, especially on refrigerated, modified atmosphere packaged (MAP) meats. The overall aim of this thesis was to learn more about Leuconostoc spp. as food spoilage organisms with a focus on commercial products where LAB spoilage is considered a problem and the main factor limiting shelf-life. Therefore, we aimed to identify Leuconostoc spp. involved in food spoilage, as well as to characterise the spoilage reactions they caused and their contamination sources during poultry meat processing. In addition, we examined the distribution of strains of Leuconostoc gasicomitatum in different food commodities. Finally, we analysed the genome content of L. gasicomitatum LMG 18811 with a special focus on metabolic pathways related to food spoilage. The findings show that Leuconostoc gelidum and L.gasicomitatum were responsible for the discoloration and off-odours developed in beef steaks. Together with Leuconostoc mesenteroides, these Leuconostoc spp., also cause spoilage of vegetable sausages. In contrast, we showed that Leuconostoc spp. are not important for the shelf-life or quality of non-marinated broiler products although, in marinated broiler fillet products, Leuconostoc spp., L.gasicomitatum in particular, are considered spoilage organisms. Furthermore, the findings of the contamination survey we carried out in a poultry processing plant indicated that spoilage Leuconostoc spp. are derived from the processing environment rather than from the broilers, and that air movement distributes psychrotrophic spoilage LAB, including leuconostocs, and has an important role in meat contamination during poultry processing. Pulsed-field gel electrophoresis (PFGE) based genotyping of L. gasicomitatum strains demonstrated that certain genotypes are common in various meat products. In contrast, genotypes associated with meat were not recovered in vegetable-based sources. This suggests that these two food categories either become contaminated with, or favour the growth of different genotypes. Furthermore, the results indicated that the meat processing environment contributes to L. gasicomitatum contamination as certain genotypes were repeatedly identified from products of the same processing plant. Finally, the sequenced and annotated genome of L.gasicomitatum LMG 18811 allowed us to identify the metabolic pathways and reactions resulting in food spoilage.
Resumo:
The reported incidence of human campylobacteriosis in Finland is higher than in most other European countries. A high annual percentage of sporadic infections is of foreign origin, although a notable proportion of summer infections is domestically acquired. While chickens appear to be a major source of campylobacters for humans in most countries, the prevalence of campylobacters is very low in chicken slaughter batches in Finland. Data on other potential animal reservoirs of human pathogenic campylobacters in Finland are scarce. Consequently, this study aimed to investigate the status of Finnish cattle as a potential source of thermophilic Campylobacter spp. and antibiotic-resistant Campylobacter jejuni for human sporadic campylobacter infections of domestic origin. A survey of the prevalence of thermophilic Campylobacter spp. in Finnish cattle studied bovine rectal faecal samples (n=952) and carcass surface samples (n=948) from twelve Finnish slaughterhouses from January to December 2003. The total prevalence of Campylobacter spp. in faecal samples was 31.1%, and in carcass samples 3.5%. Campylobacter jejuni, the most common species, was present in 19.5% of faecal samples and in 3.1% of carcasses. In addition to thermophilic Campylobacter spp., C. hyointestinalis ssp. hyointestinalis was present in bovine samples. The prevalence of campylobacters was higher among beef cattle than among dairy cattle. Using the enrichment method, the number of positive faecal samples was 7.5 times higher than that obtained by direct plating. The predominant serotypes of faecal C. jejuni, determined by serotyping with a set of 25 commercial antisera for heat-stable antigens (Penner), were Pen2 and Pen4-complex, which covered 52% of the samples. Genotyping with pulsed-field gel electrophoresis (PFGE) using SmaI restriction yielded a high diversity of C. jejuni subtypes in cattle. Determining the minimum inhibitory concentrations of ampicillin, enrofloxacin, erythromycin, gentamicin, nalidixic acid, and oxytetracycline among bovine C. jejuni isolates using a commercial broth microdilution method yielded 9% of isolates resistant to at least one of the antimicrobials examined. No multiresistant isolates were found among the bovine C. jejuni strains. The study of the shedding patterns of Campylobacter spp. among three Finnish dairy cattle herds included the examination of fresh faecal samples and tank milk samples taken five times, as well as samples from drinking troughs taken once during the one-year study. The semiquantitative enrichment method detected C. jejuni in 169 of the 340 faecal samples, mostly at low levels. In addition, C. jejuni was present in one drinking trough sample. The prevalence between herds and sampling occasions varied widely. PFGE, using SmaI as restriction enzyme, identified only a few subtypes in each herd. In two 2 of the herds, two subtypes persisted throughout the sampling. Individual animals presented various shedding patterns during the study. Comparison of C. jejuni isolates from humans, chickens and cattle included the design of primers for four new genetic markers selected from completely sequenced C. jejuni genomes 81-176, RM1221 and NCTC 11168, and the PCR examination of domestic human isolates from southern Finland in 1996, 2002 and 2003 (n=309), chicken isolates from 2003, 2006 and 2007 (n=205), and bovine isolates from 2003 (n=131). The results revealed that bovine isolates differed significantly from human and chicken isolates. In particular, the - glutamyl transpeptidase gene was uncommon among bovine isolates. The PFGE genotyping of C. jejuni isolates, using SmaI and KpnI restriction enzymes, included a geographically representative collection of isolates from domestic sporadic human infections, chicken slaughter batches, and cattle faeces and carcasses during the seasonal peak of campylobacteriosis in the summer of 2003. The study determined that 55.4% of human isolates were indistinguishable from those of chickens and cattle. Temporal association between isolates from humans and chickens was possible in 31.4% of human infections. Approximately 19% of the human infections may have been associated with cattle. However, isolates from bovine carcasses and human cases represented different PFGE subtypes. In conclusion, this study suggests that Finnish cattle is a notable reservoir of C. jejuni, the most important Campylobacter sp. in human enteric infections. Although the concentration of these organisms in bovine faeces appeared to be low, excretion can be persistent. The genetic diversity and presence or absence of marker genes support previous suggestions of host-adapted C. jejuni strains, and may indicate variations in virulence between strains from different hosts. In addition to chickens, Finnish cattle appeared to be an important reservoir and possible source of C. jejuni in domestic sporadic human infections. However, sources of campylobacters may differ between rural and urban areas in Finland, and in general, the transmission of C. jejuni of bovine origin probably occurs via other routes than food.
Identification and Epidemiological Typing of Campylobacter strains isolated from Patients in Finland
Resumo:
C. jejuni constitutes the majority of Campylobacter strains isolated from patients in Finland, and C. coli strains are also reported. To improve the species identification, a combination of phenotype- and genotype-based methods was applied. Standardising the cell suspension turbidity in the hippurate hydrolysis test enabled the reliable identification of hippurate-positive Campylobacter strains as C. jejuni. The detection of species-specific genes by PCR showed that about 30% of the hippurate-negative strains were C. jejuni. Three typing methods, serotyping, PCR-RFLP analysis of LOS biosynthesis genes and pulsed-field gel electrophoresis (PFGE) were evaluated as epidemiological typing tools for C. jejuni. The high number of non-typeable strains lowered the discriminatory ability of serotyping. PCR-RFLP typing offered high discrimination for both serotypeable and non-typeable strains, but the correlation between serotypes and RFLP-types was not high enough to enable its use for molecular serotyping of non-typeable strains. PFGE was a highly discriminative typing method. Although the use of two restriction enzymes generally increases the discriminatory ability, KpnI alone offered almost as high discrimination as the use of SmaI and KpnI. The characteristic seasonal distribution of Campylobacter infections with a peak in summer and low incidence in winter was mainly due to domestically acquired infections. Of the C. jejuni strains, 41% were of domestic origin compared to only 17% of the C. coli strains. Serotypes Pen 12, Pen 6,7 and Pen 27 were significantly associated with domestic C. jejuni infections, Pen 1,44, Pen 3 and Pen 37 with travel-related infections. Pen 2 and Pen 4-complex were common both in domestic and travel-related infections. Serotype Pen 2 was less common among patients 60 years or older than in younger patients, more prevalent in Western Finland than in other parts of the country and more prevalent than other serotypes in winter. The source of Pen 2 infections may be related to cattle, since Pen 2 is the most common serotype in isolates from Finnish cattle. PFGE subtypes among isolates from patients and chickens during the summer 2003 and from cattle during the whole year were compared. The analysis of indistinguishable SmaI/KpnI subtypes suggested that up to 31% of the human infections may have been mediated by chickens and 19% by cattle. Human strains isolated during two one-year sampling periods were studied by PFGE. Of the domestic strains, 69% belonged to SmaI subtypes found during both sampling periods. Four SmaI subtypes accounted for 45% of the domestic strains, further typing of these subtypes by KpnI revealed six temporally persistent SmaI/KpnI subtypes. They were only occasionally identified in travel-related strains, and therefore, can be considered to be national subtypes. Each subtype was associated with a serotype: Pen 2, Pen 12, Pen 27, Pen 4-complex, Pen 41, and Pen 57. Five of these subtypes were identified in cattle (S5/K27, S7/K1, S7/K2, S7/K5 and S64/K19), and two in chickens (S7/K1 and S64/K19) with a temporal association with human infections in 2003. Cattle are more likely potential sources of these persistent subtypes, since long-term excretion of Campylobacter strains by cattle has been reported.
Resumo:
Campylobacter, mainly Campylobacter jejuni and C. coli, are worldwide recognized as a major cause of bacterial food-borne gastroenteritis (World Health Organization 2010). Epidemiological studies have shown handling or eating of poultry to be significant risk factors for human infections. Campylobacter contamination can occur at all stages of a poultry meat production cycle. In summer 1999, every broiler flock from all three major Finnish poultry slaughterhouses was studied during a five month period. Caecal samples were taken in the slaughterhouses from five birds per flock. A total of 1 132 broiler flocks were tested and 33 (2.9%) of those were Campylobacter-positive. Thirty-one isolates were identified as C. jejuni and two isolates were C. coli. The isolates were serotyped for heat-stable antigens (HS) and genotyped by pulsed-field gel electrophoresis (PFGE). The most common serotypes found were HS 6,7, 12 and 4-complex. Using a combination of SmaI and KpnI patterns, 18 different PFGE types were identified. Thirty-five Finnish C. jejuni strains with five SmaI/SacII PFGE types selected among human and chicken isolates from 1997 and 1998 were used for comparison of their PFGE patterns, amplified fragment length polymorphism (AFLP) patterns, HaeIII ribotypes, and HS serotypes. The discriminatory power of PFGE, AFLP and ribotyping with HaeIII were shown to be at the same level for this selected set of strains, and these methods assigned the strains into the same groups. The PFGE and AFLP patterns within a genotype were highly similar, indicating genetic relatedness. An HS serotype was distributed among different genotypes, and different serotypes were identified within one genotype. From one turkey parent flock, the hatchery, six different commercial turkey farms (together 12 flocks) and from 11 stages at the slaughterhouse a total of 456 samples were collected during one and the half year. For the detection of Campylobacter both conventional culture and a PCR method were used. No Campylobacter were detected in either of the samples from the turkey parent flock or from the hatchery samples using the culture method. Instead PCR detected DNA of Campylobacter in five faecal samples from the turkey parent flock and in one fluff and an eggshell sample. Six out of 12 commercial turkey flocks were found negative at the farm level but only two of those were negative at slaughter. Campylobacter-positive samples within the flock at slaughter were detected between 0% and 94%, with evisceration and chilling water being the most critical stages for contamination. All of a total of 121 Campylobacter isolates were shown to be C. jejuni using a multiplex PCR assay. PFGE analysis of all isolates with KpnI restriction enzyme resulted in 11 PFGE types (I-XI) and flaA-SVR typing yielded nine flaA-SVR alleles. Three Campylobacter-positive turkey flocks were colonized by a limited number of Campylobacter genotypes both at the farm and slaughter level.In conclusion, in our first study in 1999 a low prevalence of Campylobacter in Finnish broiler flocks was detected and it has remained at a low level during the study period until the present. In the turkey meat production, we found that flocks which were negative at the farm became contaminated with Campylobacter at the slaughter process. These results suggest that proper and efficient cleaning and disinfection of slaughter and processing premises are needed to avoid cross-contamination. Prevention of colonization at the farm by a high level of biosecurity control and hygiene may be one of the most efficient ways to reduce the amount of Campylobacter-positive poultry meat in Finland. In Finland, with a persistent low level of Campylobacter-positive flocks, it could be speculated that the use of logistic slaughtering, according to Campylobacter status at farm, might have be advantageous in reducing Campylobacter contamination of retail poultry products. However, the significance of the domestic poultry meat for human campylobacteriosis in Finland should be evaluated.
Resumo:
Methicillin-resistant Staphylococcus aureus (MRSA) and Streptococcus pneumoniae are major health problems worldwide, both found in symptomless carriage but also causing even life-threatening infections. The aim of this thesis was to characterise MRSA and S. pneumoniae in detail by using several molecular typing methods for various epidemiological purposes: clonality analysis, epidemiological surveillance, outbreak investigation, and virulence factor analysis. The characteristics of MRSA isolates from the strain collection of the Finnish National Infectious Disease Register (NIDR) and pneumococcal isolates collected from military recruits and children with acute otitis media (AOM) were analysed using various typing techniques. Antimicrobial susceptibility testing, pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), spa typing, staphylococcal cassette chromosome mec (SCCmec) typing, and the detection of Panton-Valentine leukocidin (PVL) genes were performed for MRSA isolates. Pneumococcal isolates were analysed using antimicrobial susceptibility testing, serotyping, MLST, and by detecting pilus islet 1 (PI-1) and 2 (PI-2) genes. Several international community- and hospital-associated MRSA clones were recognised in Finland. The genetic diversity among MRSA FIN-4 isolates and among FIN-16 isolates was low. Overall, MRSA blood isolates from 1997 to 2006 were genetically diverse. spa typing was found to be a highly discriminatory, rapid and accurate typing method and it also qualifies as the primary typing method in countries with a long history of PFGE-based MRSA strain nomenclature. However, additional typing by another method, e.g. PFGE, is needed in certain situations to be able to provide adequate discrimination for epidemiological surveillance and outbreak investigation. An outbreak of pneumonia was associated with one pneumococcal strain among military recruits, previously healthy young men living in a crowded setting. The pneumococcal carriage rate after the outbreak was found to be exceptionally high. PI-1 genes were detected at a rather low prevalence among pneumococcal isolates from children with AOM. However, the study demonstrated that PI-1 has existed among pneumococcal isolates prior to pneumococcal conjugate vaccine and the increased antimicrobial resistance era. Moreover, PI-1 was found to associate with the serotype rather than the genotype. This study adds to our understanding of the molecular epidemiology of MRSA strains in Finland and the importance of an appropriate genotyping method to be able to perform high-level laboratory-based surveillance of MRSA. Epidemiological and molecular analyses of S. pneumoniae add to our knowledge of the characteristics of pneumococcal strains in Finland.
Resumo:
Ozone (O3) is a reactive gas present in the troposphere in the range of parts per billion (ppb), i.e. molecules of O3 in 109 molecules of air. Its strong oxidative capacity makes it a key element in tropospheric chemistry and a threat to the integrity of materials, including living organisms. Knowledge and control of O3 levels are an issue in relation to indoor air quality, building material endurance, respiratory human disorders, and plant performance. Ozone is also a greenhouse gas and its abundance is relevant to global warming. The interaction of the lower troposphere with vegetated landscapes results in O3 being removed from the atmosphere by reactions that lead to the oxidation of plant-related components. Details on the rate and pattern of removal on different landscapes as well as the ultimate mechanisms by which this occurs are not fully resolved. This thesis analysed the controlling processes of the transfer of ozone at the air-plant interface. Improvement in the knowledge of these processes benefits the prediction of both atmospheric removal of O3 and its impact on vegetation. This study was based on the measurement and analysis of multi-year field measurements of O3 flux to Scots pine (Pinus sylvestris L.) foliage with a shoot-scale gas-exchange enclosure system. In addition, the analyses made use of simultaneous CO2 and H2O exchange, canopy-scale O3, CO2 and H2O exchange, foliage surface wetness, and environmental variables. All data was gathered at the SMEAR measuring station (southern Finland). Enclosure gas-exchange techniques such as those commonly used for the measure of CO2 and water vapour can be applied to the measure of ozone gas-exchange in the field. Through analysis of the system dynamics the occurring disturbances and noise can be identified. In the system used in this study, the possible artefacts arising from the ozone reactivity towards the system materials in combination with low background concentrations need to be taken into account. The main artefact was the loss of ozone towards the chamber walls, which was found to be very variable. The level of wall-loss was obtained from simultaneous and continuous measurements, and was included in the formulation of the mass balance of O3 concentration inside the chamber. The analysis of the field measurements in this study show that the flux of ozone to the Scots pine foliage is generated in about equal proportions by stomatal and non-stomatal controlled processes. Deposition towards foliage and forest is sustained also during night and winter when stomatal gas-exchange is low or absent. The non-stomatal portion of the flux was analysed further. The pattern of flux in time was found to be an overlap of the patterns of biological activity and presence of wetness in the environment. This was seen to occur both at the shoot and canopy scale. The presence of wetness enhanced the flux not only in the presence of liquid droplets but also during existence of a moisture film on the plant surfaces. The existence of these films and their relation to the ozone sinks was determined by simultaneous measurements of leaf surface wetness and ozone flux. The results seem to suggest ozone would be reacting at the foliage surface and the reaction rate would be mediated by the presence of surface wetness. Alternative mechanisms were discussed, including nocturnal stomatal aperture and emission of reactive volatile compounds. The prediction of the total flux could thus be based on a combination of a model of stomatal behaviour and a model of water absorption on the foliage surfaces. The concepts behind the division of stomatal and non-stomatal sinks were reconsidered. This study showed that it is theoretically possible that a sink located before or near the stomatal aperture prevents or diminishes the diffusion of ozone towards the intercellular air space of the mesophyll. This obstacle to stomatal diffusion happens only under certain conditions, which include a very low presence of reaction sites in the mesophyll, an extremely strong sink located on the outer surfaces or stomatal pore. The relevance, or existence, of this process in natural conditions would need to be assessed further. Potentially strong reactions were considered, including dissolved sulphate, volatile organic compounds, and apoplastic ascorbic acid. Information on the location and the relative abundance of these compounds would be valuable. The highest total flux towards the foliage and forest happens when both the plant activity and ambient moisture are high. The highest uptake into the interior of the foliage happens at large stomatal apertures, provided that scavenging reactions located near the stomatal pore are weak or non-existent. The discussion covers the methodological developments of this study, the relevance of the different controlling factors of ozone flux, the partition amongst its component, and the possible mechanisms of non-stomatal uptake.
Resumo:
The aim of this thesis was to increase our knowledge about the effects of seed origin on the timing of height growth cessation and field performance of silver birch from different latitudes, with special attention paid to the browsing damage by moose in young birch plantations. The effect of seed origin latitude and sowing time on timing of height growth cessation of first-year seedlings was studied in a greenhouse experiment with seven seed origins (lat. 58º - 67ºN). Variation in critical night length (CNL) for 50 % bud set within two latitudinally distant stands (60º and 67ºN) was studied in three phytotron experiments. Browsing by moose on 5-11 -year-old silver birch saplings from latitudinally different seed origins (53º - 67ºN) was studied in a field experiment in southern Finland. Yield and stem quality of 22-year-old silver birch trees of Baltic, Finnish and Russian origin (54º - 63ºN) and the effect of latitudinal seed transfers were studied in two provenance trials at Tuusula, southern and Viitasaari, central Finland. The timing of height growth cessation depended systematically on latitude of seed origin and sowing date. The more northern the seed origin, the earlier the growth cessation and the shorter the growth period. Later sowing dates delayed growth cessation but also shortened the growth period. The mean CNL of the southern ecotype was longer, 6.3 ± 0.2 h (95 % confidence interval), than that of the northern ecotype, 3.1 ± 0.3 h. Within-ecotype variance of the CNL was higher in the northern ecotype (0.484 h2) than in the southern ecotype (0.150 h2). Browsing by moose decreased with increasing latitude of seed origin and sapling height. Origins transferred from more southern latitudes were more heavily browsed than the more northern native ones. Southern Finnish seed origins produced the highest volume per unit area in central Finland (lat. 63º11'N). Estonian and north Latvian stand seed origins, and the southern Finnish plus tree origins, were the most productive ones in southern Finland (lat. 60º21'N). Latitudinal seed transfer distance had a significant effect on survival, stem volume/ha and proportion of trees with a stem defect. The relationship of both survival and stem volume/ha to the latitudinal seed transfer distance was curvilinear. Volume was increased by transferring seed from ca. 2 degrees of latitude from the south. A longer transfer from the south, and transfer from the north, decreased the yield. The proportion of trees with a stem defect increased linearly in relation to the latitudinal seed transfer distance from the south.
Resumo:
Volatilization of ammonia (NH3) from animal manure is a major pathway for nitrogen (N) losses that cause eutrophication, acidification, and other environmental hazards. In this study, the effect of alternative techniques of manure treatment (aeration, separation, addition of peat) and application (broadcast spreading, band spreading, injection, incorporation by harrowing) on ammonia emissions in the field and on nitrogen uptake by ley or cereals was studied. The effect of a mixture of slurry and peat on soil properties was also investigated. The aim of this study was to find ways to improve the utilization of manure nitrogen and reduce its release to the environment. Injection into the soil or incorporation by harrowing clearly reduced ammonia volatilization from slurry more than did the surface application onto a smaller area by band spreading or reduction of the dry matter of slurry by aeration or separation. Surface application showed low ammonia volatilization, when pig slurry was applied to tilled bare clay soil or to spring wheat stands in early growth stages. Apparently, the properties of both slurry and soil enabled the rapid infiltration and absorption of slurry and its ammoniacal nitrogen by the soil. On ley, however, surface-applied cattle slurry lost about half of its ammoniacal nitrogen. The volatilization of ammonia from surface-applied peat manure was slow, but proceeded over a long period of time. After rain or irrigation, the peat manure layer on the soil surface retarded evaporation. Incorporation was less important for the fertilizer effect of peat manure than for pig slurry, but both manures were more effective when incorporated. Peat manure applications increase soil organic matter content and aggregate stability. Stubble mulch tillage hastens the effect in surface soil compared with ploughing. The apparent recovery of ammoniacal manure nitrogen in crop yield was higher with injection and incorporation than with surface applications. This was the case for leys as well as for spring cereals, even though ammonia losses from manures applied to cereals were relatively low with surface applications as well. The ammoniacal nitrogen of surface-applied slurry was obviously adsorbed by the very surface soil and remained mostly unavailable to plant roots in the dry soil. Supplementing manures with inorganic fertilizer nitrogen, which adds plant-available nitrogen to the soil at the start of growth, increased the overall recovery of applied nitrogen in crop yields.
Resumo:
Our present-day understanding of fundamental constituents of matter and their interactions is based on the Standard Model of particle physics, which relies on quantum gauge field theories. On the other hand, the large scale dynamical behaviour of spacetime is understood via the general theory of relativity of Einstein. The merging of these two complementary aspects of nature, quantum and gravity, is one of the greatest goals of modern fundamental physics, the achievement of which would help us understand the short-distance structure of spacetime, thus shedding light on the events in the singular states of general relativity, such as black holes and the Big Bang, where our current models of nature break down. The formulation of quantum field theories in noncommutative spacetime is an attempt to realize the idea of nonlocality at short distances, which our present understanding of these different aspects of Nature suggests, and consequently to find testable hints of the underlying quantum behaviour of spacetime. The formulation of noncommutative theories encounters various unprecedented problems, which derive from their peculiar inherent nonlocality. Arguably the most serious of these is the so-called UV/IR mixing, which makes the derivation of observable predictions especially hard by causing new tedious divergencies, to which our previous well-developed renormalization methods for quantum field theories do not apply. In the thesis I review the basic mathematical concepts of noncommutative spacetime, different formulations of quantum field theories in the context, and the theoretical understanding of UV/IR mixing. In particular, I put forward new results to be published, which show that also the theory of quantum electrodynamics in noncommutative spacetime defined via Seiberg-Witten map suffers from UV/IR mixing. Finally, I review some of the most promising ways to overcome the problem. The final solution remains a challenge for the future.
Resumo:
The efforts of combining quantum theory with general relativity have been great and marked by several successes. One field where progress has lately been made is the study of noncommutative quantum field theories that arise as a low energy limit in certain string theories. The idea of noncommutativity comes naturally when combining these two extremes and has profound implications on results widely accepted in traditional, commutative, theories. In this work I review the status of one of the most important connections in physics, the spin-statistics relation. The relation is deeply ingrained in our reality in that it gives us the structure for the periodic table and is of crucial importance for the stability of all matter. The dramatic effects of noncommutativity of space-time coordinates, mainly the loss of Lorentz invariance, call the spin-statistics relation into question. The spin-statistics theorem is first presented in its traditional setting, giving a clarifying proof starting from minimal requirements. Next the notion of noncommutativity is introduced and its implications studied. The discussion is essentially based on twisted Poincaré symmetry, the space-time symmetry of noncommutative quantum field theory. The controversial issue of microcausality in noncommutative quantum field theory is settled by showing for the first time that the light wedge microcausality condition is compatible with the twisted Poincaré symmetry. The spin-statistics relation is considered both from the point of view of braided statistics, and in the traditional Lagrangian formulation of Pauli, with the conclusion that Pauli's age-old theorem stands even this test so dramatic for the whole structure of space-time.
Resumo:
Asymmetrical flow field-flow fractionation (AsFlFFF) was constructed, and its applicability to industrial, biochemical, and pharmaceutical applications was studied. The effect of several parameters, such as pH, ionic strength, temperature and the reactants mixing ratios on the particle sizes, molar masses, and the formation of aggregates of macromolecules was determined by AsFlFFF. In the case of industrial application AsFlFFF proved to be a valuable tool in the characterization of the hydrodynamic particle sizes, molar masses and phase transition behavior of various poly(N-isopropylacrylamide) (PNIPAM) polymers as a function of viscosity and phase transition temperatures. The effect of sodium chloride salt and the molar ratio of cationic and anionic polyelectrolytes on the hydrodynamic particle sizes of poly (methacryloxyethyl trimethylammonium chloride) and poly (ethylene oxide)-block-poly (sodium methacrylate) and their complexes were studied. The particle sizes of PNIPAM polymers, and polyelectrolyte complexes measured by AsFlFFF were in agreement with those obtained by dynamic light scattering. The molar masses of PNIPAM polymers obtained by AsFlFFF and size exclusion chromatography agreed also well. In addition, AsFlFFF proved to be a practical technique in thermo responsive behavior studies of polymers at temperatures up to about 50 oC. The suitability of AsFlFFF for biological, biomedical, and pharmaceutical applications was proved, upon studying the lipid-protein/peptide interactions, and the stability of liposomes at different temperatures. AsFlFFF was applied to the studies on the hydrophobic and electrostatic interactions between cytochrome c (a basic peripheral protein) and anionic lipid, and oleic acid, and sodium dodecyl sulphate surfactant. A miniaturized AsFlFFF constructed in this study was exploited in the elucidation of the effect of copper (II), pH, ionic strength, and vortexing on the particle sizes of low-density lipoproteins.