10 resultados para Peptide nucleic acid

em Helda - Digital Repository of University of Helsinki


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hantaviruses (family Bunyaviridae, genus Hantavirus) are enveloped viruses incorporating a segmented, negative-sense RNA genome. Each hantavirus is carried by its specific host, either a rodent or an insectivore (shrew), in which the infection is asymptomatic and persistent. In humans, hantaviruses cause Hemorrhagic fever with renal syndrome (HFRS) in Eurasia and Hantavirus cardiopulmonary syndrome (HCPS) in the Americas. In Finland, Puumala virus (genus Hantavirus) is the causative agent of NE, a mild form of HFRS. The HFRS-type diseases are often associated with renal failure and proteinuria that might be mechanistically explained by infected kidney tubular cell degeneration in patients. Previously, it has been shown that non-pathogenic hantavirus, Tula virus (TULV), could cause programmed cell death, apoptosis, in cell cultures. This suggested that the infected kidney tubular degeneration could be caused directly by virus replication. In the first paper of this thesis the molecular mechanisms involved in TULV-induced apoptosis was further elucidated. A virus replication-dependent down-regulation of ERK1/2, concomitantly with the induced apoptosis, was identified. In addition, this phenomenon was not restricted to TULV or to non-pathogenic hantaviruses in general since also a pathogenic hantavirus, Seoul virus, could inhibit ERK1/2 activity. Hantaviruses consist of membrane-spanning glycoproteins Gn and Gc, RNA-dependent RNA polymerase (L protein) and nucleocapsid protein N, which encapsidates the viral genome, and thus forms the ribonucleoprotein (RNP). Interaction between the cytoplasmic tails of viral glycoproteins and RNP is assumed to be the only means how viral genetic material is incorporated into infectious virions. In the second paper of this thesis, it was shown by immunoprecipitation that viral glycoproteins and RNP interact in the purified virions. It was further shown that peptides derived from the cytoplasmic tails (CTs) of both Gn and Gc could bind RNP and recombinant N protein. In the fourth paper the cytoplamic tail of Gn but not Gc was shown to interact with genomic RNA. This interaction was probably rather unspecific since binding of Gn-CT with unrelated RNA and even single-stranded DNA were also observed. However, since the RNP consists of both N protein and N protein-encapsidated genomic RNA, it is possible that the viral genome plays a role in packaging of RNPs into virions. On the other hand, the nucleic acid-binding activity of Gn may have importance in the synthesis of viral RNA. Binding sites of Gn-CT with N protein or nucleic acids were also determined by peptide arrays, and they were largely found to overlap. The Gn-CT of hantaviruses contain a conserved zinc finger (ZF) domain with an unknown function. Some viruses need ZFs in entry or post-entry steps of the viral life cycle. Cysteine residues are required for the folding of ZFs by coordinating zinc-ions, and alkylation of these residues can affect virus infectivity. In the third paper, it was shown that purified hantavirions could be inactivated by treatment with cysteine-alkylating reagents, especially N-ethyl maleimide. However, the effect could not be pin-pointed to the ZF of Gn-CT since also other viral proteins reacted with maleimides, and it was, therefore, impossible to exclude the possibility that other cysteines besides those that were essential in the formation of ZF are required for hantavirus infectivity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Evolutionary history of biological entities is recorded within their nucleic acid sequences and can (sometimes) be deciphered by thorough genomic analysis. In this study we sought to gain insights into the diversity and evolution of bacterial and archaeal viruses. Our primary interest was pointed towards those virus groups/families for which comprehensive genomic analysis was not previously possible due to the lack of sufficient amount of genomic data. During the course of this work twenty-five putative proviruses integrated into various prokaryotic genomes were identified, enabling us to undertake a comparative genomics approach. This analysis allowed us to test the previously formulated evolutionary hypotheses and also provided valuable information on the molecular mechanisms behind the genome evolution of the studied virus groups.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Viral genomes are encapsidated within protective protein shells. This encapsidation can be achieved either by a co-condensation reaction of the nucleic acid and coat proteins, or by first forming empty viral particles which are subsequently packaged with nucleic acid, the latter mechanism being typical for many dsDNA bacteriophages. Bacteriophage PRD1 is an icosahedral, non-tailed dsDNA virus that has an internal lipid membrane, the hallmark of the Tectiviridae family. Although PRD1 has been known to assemble empty particles into which the genome is subsequently packaged, the mechanism for this has been unknown, and there has been no evidence for a separate packaging vertex, similar to the portal structures used for packaging in the tailed bacteriophages and herpesviruses. In this study, a unique DNA packaging vertex was identified for PRD1, containing the packaging ATPase P9, packaging factor P6 and two small membrane proteins, P20 and P22, extending the packaging vertex to the internal membrane. Lack of small membrane protein P20 was shown to totally abolish packaging, making it an essential part of the PRD1 packaging mechanism. The minor capsid proteins P6 was shown to be an important packaging factor, its absence leading to greatly reduced packaging efficiency. An in vitro DNA packaging mechanism consisting of recombinant packaging ATPase P9, empty procapsids and mutant PRD1 DNA with a LacZ-insert was developed for the analysis of PRD1 packaging, the first such system ever for a virus containing an internal membrane. A new tectiviral sequence, a linear plasmid called pBClin15, was identified in Bacillus cereus, providing material for sequence analysis of the tectiviruses. Analysis of PRD1 P9 and other putative tectiviral ATPase sequences revealed several conserved sequence motifs, among them a new tectiviral packaging ATPase motif. Mutagenesis studies on PRD1 P9 were used to confirm the significance of the motifs. P9-type putative ATPase sequences carrying a similar sequence motif were identified in several other membrane containing dsDNA viruses of bacterial, archaeal and eukaryotic hosts, suggesting that these viruses may have similar packaging mechanisms. Interestingly, almost the same set of viruses that were found to have similar putative packaging ATPases had earlier been found to share similar coat protein folds and capsid structures, and a common origin for these viruses had been suggested. The finding in this study of similar packaging proteins further supports the idea that these viruses are descendants of a common ancestor.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Viruses are submicroscopic, infectious agents that are obligate intracellular parasites. They adopt various types of strategies for their parasitic replication and proliferation in infected cells. The nucleic acid genome of a virus contains information that redirects molecular machinery of the cell to the replication and production of new virions. Viruses that replicate in the cytoplasm and are unable to use the nuclear transcription machinery of the host cell have developed their own transcription and capping systems. This thesis describes replication strategies of two distantly related viruses, hepatitis E virus (HEV) and Semliki Forest virus (SFV), which belong to the alphavirus-like superfamily of positive-strand RNA viruses. We have demonstrated that HEV and SFV share a unique cap formation pathway specific for alphavirus-like superfamily. The capping enzyme first acts as a methyltransferase, catalyzing the transfer of a methyl group from S-adenosylmethionine to GTP to yield m7GTP. It then transfers the methylated guanosine to the end of viral mRNA. Both reactions are virus-specific and differ from those described for the host cell. Therefore, these capping reactions offer attractive targets for the development of antiviral drugs. Additionally, it has been shown that replication of SFV and HEV takes place in association with cellular membranes. The origin of these membranes and the intracellular localization of the components of the replication complex were studied by modern microscopy techniques. It was demonstrated that SFV replicates in cytoplasmic membranes that are derived from endosomes and lysosomes. According to our studies, site for HEV replication seems to be the intermediate compartment which mediates the traffic between endoplasmic reticulum and the Golgi complex. As a result of this work, a unique mechanism of cap formation for hepatitis E virus replicase has been characterized. It represents a novel target for the development of specific inhibitors against viral replication.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Molecular machinery on the micro-scale, believed to be the fundamental building blocks of life, involve forces of 1-100 pN and movements of nanometers to micrometers. Micromechanical single-molecule experiments seek to understand the physics of nucleic acids, molecular motors, and other biological systems through direct measurement of forces and displacements. Optical tweezers are a popular choice among several complementary techniques for sensitive force-spectroscopy in the field of single molecule biology. The main objective of this thesis was to design and construct an optical tweezers instrument capable of investigating the physics of molecular motors and mechanisms of protein/nucleic-acid interactions on the single-molecule level. A double-trap optical tweezers instrument incorporating acousto-optic trap-steering, two independent detection channels, and a real-time digital controller was built. A numerical simulation and a theoretical study was performed to assess the signal-to-noise ratio in a constant-force molecular motor stepping experiment. Real-time feedback control of optical tweezers was explored in three studies. Position-clamping was implemented and compared to theoretical models using both proportional and predictive control. A force-clamp was implemented and tested with a DNA-tether in presence of the enzyme lambda exonuclease. The results of the study indicate that the presented models describing signal-to-noise ratio in constant-force experiments and feedback control experiments in optical tweezers agree well with experimental data. The effective trap stiffness can be increased by an order of magnitude using the presented position-clamping method. The force-clamp can be used for constant-force experiments, and the results from a proof-of-principle experiment, in which the enzyme lambda exonuclease converts double-stranded DNA to single-stranded DNA, agree with previous research. The main objective of the thesis was thus achieved. The developed instrument and presented results on feedback control serve as a stepping stone for future contributions to the growing field of single molecule biology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nearly one fourth of new medicinal molecules are biopharmaceutical (protein, antibody or nucleic acid derivative) based. However, the administration of these compounds is not always that straightforward due to the fragile nature of aforementioned domains in GI-tract. In addition, these molecules often exhibit poor bioavailability when administered orally. As a result, parenteral administration is commonly preferred. In addition, shelf-life of these molecules in aqueous environments is poor, unless stored in low temperatures. Another approach is to bring these molecules to anhydrous form via lyophilization resulting in enhanced stability during storage. Proteins cannot most commonly be freeze dried by themselves so some kind of excipients are nearly always necessary. Disaccharides are commonly utilized excipients in freeze-dried formulations since they provide a rigid glassy matrix to maintain the native conformation of the protein domain. They also act as "sink"-agents, which basically mean that they can absorb some moisture from the environment and still help to protect the API itself to retain its activity and therefore offer a way to robust formulation. The aim of the present study was to investigate how four amorphous disaccharides (cellobiose, melibiose, sucrose and trehalose) behave when they are brought to different relative humidity levels. At first, solutions of each disaccharide were prepared, filled into scintillation vials and freeze dried. Initial information on how the moisture induced transformations take place, the lyophilized amorphous disaccharide cakes were placed in vacuum desiccators containing different relative humidity levels for defined period, after which selected analyzing methods were utilized to further examine the occurred transformations. Affinity to crystallization, water sorption of the disaccharides, the effect of moisture on glass transition and crystallization temperature were studied. In addition FT-IR microscopy was utilized to map the moisture distribution on a piece of lyophilized cake. Observations made during the experiments backed up the data mentioned in a previous study: melibiose and trehalose were shown to be superior over sucrose and cellobiose what comes to the ability to withstand elevated humidity and temperature, and to avoid crystallization with pharmaceutically relevant moisture contents. The difference was made evident with every utilized analyzing method. In addition, melibiose showed interesting anomalies during DVS runs, which were absent with other amorphous disaccharides. Particularly fascinating was the observation made with polarized light microscope, which revealed a possible small-scale crystallization that cannot be observed with XRPD. As a result, a suggestion can safely be made that a robust formulation is most likely obtained by utilizing either melibiose or trehalose as a stabilizing agent for biopharmaceutical freeze-dried formulations. On the other hand, more experiments should be conducted to obtain more accurate information on why these disaccharides have better tolerance for elevating humidities than others.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Syövän diagnostiikassa ja hoidossa nanopartikkelit voivat toimia kuljetinaineina lääke- ja diagnostisille aineille tai nukleiinihappojaksoille. Kantaja-aineeseen voidaan liittää kohdennusmolekyylejä partikkelien passiivista tai aktiivista kohdennusta varten tai radioleima kuvantamista tai radioterapiaa varten. Kantaja-aineiden avulla voidaan parantaa lääkeaineen fysikaalis-kemiallisia ominaisuuksia ja biologista hyötyosuutta, vähentää systeemisiä sivuvaikutuksia, pidentää lääkeaineen puoliintumisaikaa ja siten harventaa annosteluväliä, sekä parantaa lääkeaineen pääsyä kohdekudokseen. Näin voidaan parantaa kemo- ja radioterapian tehoa ja hoidon onnistumisen todennäköisyyttä. Kirjallisuuskatsauksessa perehdytään nanokantajien rooliin syövän hoidossa. Vuosikymmeniä jatkuneesta tutkimuksesta huolimatta vain kaksi (Eurooppa) tai kolme (Yhdysvallat) nanopartikkeliformulaatiota on hyväksytty markkinoille syövän hoidossa. Ongelmina ovat riittämätön hakeutuminen kohdekudokseen, immunogeenisyys ja nanopartikkelien labiilius. Kokeellisessa osassa tutkitaan in vitro ja hiirillä in vivo 99mTc-leimattujen, PEG-verhoiltujen biotiiniliposomien kaksivaiheista kohdennusta ihmisen munasarjan adenokarsinoomasoluihin. Kohdentamiseen käytetään biotinyloitua setuksimabi-(Erbitux®) vasta-ainetta, joka sitoutuu solujen yli-ilmentämiin EGF-reseptoreihin. Kaksivaiheista kohdennusta verrataan suoraan ja/tai passiiviseen kohdennukseen. Tehokkaampien kuvantamismenetelmien kehitys on vauhdittanut kohdennettujen nanopartikkelien tutkimusta. Isotooppikuvantamista käyttäen pystytään seuraamaan radioleiman jakautumista elimistössä ja kuvantamaan solutasolla tapahtuvia ilmiöitä. Kirjallisuuskatsauksessa perehdytään SPECT- ja PET-kuvantamiseen syövän hoidossa, sekä niiden hyödyntämiseen lääkekehityksessä nanopartikkelien kuvantamisessa. Kyseiset kuvantamismenetelmät erottuvat muista menetelmistä korkean erotuskyvyn, herkkyyden ja helppokäyttöisyyden suhteen. Kokeellisessa osassa 99mTc-leimattujen liposomien distribuutiota hiirissä tutkittiin SPECT-CT-laitteen avulla. Aktiivisuus kasvaimessa, pernassa ja maksassa kvantifioitiin InVivoScope-ohjelman ja gammalaskijan avulla. Tuloksia verrattiin keskenään. In vitro-kokeessa saavutettiin kaksivaiheisella kohdennuksella 2,7- 3,5-kertainen (solulinjasta riippuen) hakeutuminen soluihin kontrolliliposomeihin verrattuna. Kuitenkin suora kohdennus toimi kaksivaiheista kohdennusta paremmin in vitro. In vivo –kokeissa liposomit jakautuivat kasvaimeen tehokkaammin i.p.-annosteltuna kuin i.v.-annosteltuna. Kaksivaiheisella kohdennuksella saavutettiin 1,24-kertainen jakautuminen kasvaimeen (% ID/g kudosta) passiivisesti kohdennettuihin liposomeihin verrattuna. %ID/elin oli kohdennetuilla liposomeilla 5,9 % ja passiivisesti kohdennetuilla 5,4%. Todellinen ero oli siis pieni. InVivoScope:n ja gammalaskijan tulokset eivät korreloineet keskenään. Lisätutkimuksia ja menetelmän optimointia vaaditaan liposomien kohdennuksessa kasvaimeen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacteriocin-producing lactic acid bacteria and their isolated peptide bacteriocins are of value to control pathogens and spoiling microorganisms in foods and feed. Nisin is the only bacteriocin that is commonly accepted as a food preservative and has a broad spectrum of activity against Gram-positive organisms including spore forming bacteria. In this study nisin induction was studied from two perspectives, induction from inside of the cell and selection of nisin inducible strains with increased nisin induction sensitivity. The results showed that a mutation in the nisin precursor transporter NisT rendered L. lactis incapable of nisin secretion and lead to nisin accumulation inside the cells. Intracellular proteolytic activity could cleave the N-terminal leader peptide of nisin precursor, resulting in active nisin in the cells. Using a nisin sensitive GFP bioassay it could be shown, that the active intracellular nisin could function as an inducer without any detectable release from the cells. The results suggested that nisin can be inserted into the cytoplasmic membrane from inside the cell and activate NisK. This model of two-component regulation may be a general mechanism of how amphiphilic signals activate the histidine kinase sensor and would represent a novel way for a signal transduction pathway to recognize its signal. In addition, nisin induction was studied through the isolation of natural mutants of the GFPuv nisin bioassay strain L. lactis LAC275 using fl uorescence-activated cell sorting (FACS). The isolated mutant strains represent second generation of GFPuv bioassay strains which can allow the detection of nisin at lower levels. The applied aspect of this thesis was focused on the potential of bacteriocins in chicken farming. One aim was to study nisin as a potential growth promoter in chicken feed. Therefore, the lactic acid bacteria of chicken crop and the nisin sensitivity of the isolated strains were tested. It was found that in the crop Lactobacillus reuteri, L. salivarius and L. crispatus were the dominating bacteria and variation in nisin resistance level of these strains was found. This suggested that nisin may be used as growth promoter without wiping out the dominating bacterial species in the crop. As the isolated lactobacilli may serve as bacteria promoting chicken health or reducing zoonoosis and bacteriocin production is one property associated with probiotics, the isolated strains were screened for bacteriocin activity against the pathogen Campylobacter jejuni. The results showed that many of the isolated L. salivarius strains could inhibit the growth of C. jejuni. The bacteriocin of the L. salivarius LAB47 strain, with the strongest activity, was further characterized. Salivaricin 47 is heat-stable and active in pH range 3 to 8, and the molecular mass was estimated to be approximately 3.2 kDa based on tricine SDS-PAGE analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nisäkkäillä keskushermoston uudistuminen on rajallista. Keskushermostovamman jälkeen aktivoituu monien paranemista edistävien tekijöiden lisäksi myös estäviä tekijöitä. Monella molekyylillä, kuten laminiinilla, on keskushermoston paranemista tehostava vaikutus. Laminiinit ovat myös kehon tyvikalvojen oleellisia rakennuskomponentteja. Keskushermoston laminiinit ovat tärkeitä sikiökehityksen aikana, esimerkiksi hermosäikeiden ohjauksessa. Myöhemmin ne osallistuvat veriaivoesteen ylläpitoon sekä vammojen jälkeiseen kudosreaktioon. Väitöskirjatutkimuksessani olen selvittänyt lamiiniinien, erityisesti γ1 laminiinin ja sen KDI peptidin, ekspressiota keskushermoston vammatilanteissa. Kokeellisessa soluviljelmäasetelmassa, joka simuloi vammautunutta keskushermostoympäristöä, osoitimme että KDI peptidi voimistaa sekä hermosolujen selviytymistä että hermosäikeiden kasvua. Kainihappo on glutamaattianalogi, ja glutamaattitoksisuudella uskotaan olevan tärkeä merkitys keskushermoston eri vamma- ja sairaustilanteissa tapahtuvassa hermosolukuolemassa. Toisessa väitöskirjani osatyössä osoitimme eläinmallissa KDI peptidin suojaavan rotan aivojen hippokampuksen hermosoluja kainihapon aiheuttamalta solutuholta. Elektrofysiologisilla mittauksilla osoitimme kolmannessa osatyössäni, että KDI peptidi estää glutamaattireseptorivirtoja ja suojaa siten glutamaattitoksisuudelta. Aivoveritulpan aiheuttama aivovaurio on yleinen syy aivohalvaukseen. Viimeisessä osatyössäni tutkimme eläinmallissa laminiinien ekspressiota iskemian vaurioittamassa aivokudoksessa. Laminiiniekspression todettiin voimistuvan vaurion jälkeen sekä tyvikalvo- että soluväliainerakenteissa. Vaurion ympärillä havaittiin astrosyyttejä, jotka jo melko aikaisessa vaiheessa vamman jälkeen ekspressoivat γ1 laminiinia ja KDI peptidiä. Tästä voidaan päätellä laminiinien osallistuvan aivoiskeemisen vaurion patofysiologiaan. Yleisesti väitöskirjatyöni kartoitti laminiinien ekspressiota sekä terveessä että vammautuneessa keskushermostossa. Väitöskirjatyöni tukee hypoteesia, jonka mukaan KDI peptidi suojaa keskushermostoa vaurioilta.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the 1980 s, laminin-1 has been linked to regeneration of the central nervous system (CNS) and promotion of neuronal migration and axon guidance during CNS development. In this thesis, we clarify the role of γ1 laminin and its KDI tripeptide in development of human embryonic spinal cord, in regeneration of adult rat spinal cord injury (SCI), in kainic acid-induced neuronal death, and in the spinal cord tissue of amyotrophic lateral sclerosis (ALS). We demonstrated that γ1 laminin together with α1, β1, and β3 laminins localize at the floor plate region in human embryonic spinal cord. This localization of γ1 laminin is in spatial and temporal correlation with development of the spinal cord and indicates that γ1 laminin may participate in commissural axon guidance during the embryonic development of the human CNS. With in vitro studies using the Matrigel culture system, we demonstrated that the KDI tripeptide of γ1 laminin provides a chemotrophic guidance cue for neurites of the human embryonic dorsal spinal cord, verifying the functional ability of γ1 laminin to guide commissural axons. Results from our experimental SCI model demonstrate that the KDI tripeptide enhanced functional recovery and promoted neurite outgrowth across the mechanically injured area in the adult rat spinal cord. Furthermore, our findings indicate that the KDI tripeptide as a non-competitive inhibitor of the ionotropic glutamate receptors can provide when administered in adequate concentrations an effective method to protect neurons against glutamate-induced excitotoxic cell death. Human postmortem samples were used to study motor neuron disease, ALS (IV), and the study revealed that in human ALS spinal cord, γ1 laminin was selectively over-expressed by reactive astrocytes, and that this over-expression may correlate with disease severity. The multiple ways by which γ1 laminin and its KDI tripeptide provide neurotrophic protection and enhance neuronal viability suggest that the over-expression of γ1 laminin may be a glial attempt to provide protection for neurons against ALS pathology. The KDI tripeptide is effective therapeutically thus far in animal models only. However, because KDI containing γ1 laminin exists naturally in the human CNS, KDI therapies are unlikely to be toxic or allergenic. Results from our animal models are encouraging, with no toxic side-effects detected even at high concentrations, but the ultimate confirmation can be achieved only after clinical trials. More research is still needed until the KDI tripeptide is refined into a clinically applicable method to treat various neurological disorders.