78 resultados para PULMONARY-FUNCTION
em Helda - Digital Repository of University of Helsinki
Resumo:
Esophageal atresia (EA), a common congenital anomaly comprising interrupted esophagus with or without a tracheoesophageal fistula (TEF), affects one in 2840 newborns. Over half have associated anomalies. After EA repair in infancy, gastroesophageal reflux (GER) and esophageal dysmotility and respiratory problems are common. As there exist no previous population-based long-term follow-up-studies on EA, its long-term sequelae are unclear. The aims of this study were to assess the cancer incidence (I), esophageal morbidity and function (II), respiratory morbidity (III), and the spinal defects (IV) in adults with repaired EA. All patients treated for EA at the Hospital for Children and Adolescents, University of Helsinki, from 1947 to 1985 were identified, and those alive with their native esophagus were contacted, and the first hundred who replied made up the study group. The patients were interviewed, they filled in symptom questionnaires, and they underwent esophageal endoscopy and manometry, pulmonary function tests, and a full orthopedic evaluation was performed with radiographs of the spine. The questionnaire was also sent by mail to adults with repaired EA not attending the clinical study, and to 287 general population-derived controls matched for age, gender, and municipality of residence. Incidence of cancer among the study population was evaluated from the population-based countrywide cancer registry. 169 (72%) adults with repaired EA replied; 101 (42%) (58 male) participated in the clinical studies at a median age of 36 years (range, 22-56). Symptomatic GER occurred in 34% and dysphagia in 85% of the patients and in 8% and 2% of the controls (P<0.001 for both). The main endoscopic findings included hiatal hernia (28%), Barrett´s esophagus (11%), esophagitis (8%), and stenotic anastomosis (8%). Histology revealed esophagitis in 25 individuals, and epithelial metaplasia in another 21. At immunohistochemistry, CDX2-positive columnar epithelial metaplasia was present in all 21 individuals, and 6 of these also demonstrated goblet cells and MUC2 positivity. In all histological groups, GER and dysphagia were equally common (P=ns). Esophageal manometry demonstrated non-propagating peristalsis in most of the patients, and low ineffective pressure of the distal esophageal body in all. The changes were significantly worse in those with epithelial metaplasia (P≤0.022). Anastomotic complications (OR 8.6-24, 95%CI 1.7-260, P=0.011-0.008), age (OR 20, 95%CI 1.3-310, P=0.034), low distal esophageal body pressure (OR 2.6, 95%CI 0.7-10, P=0.002), and defective esophageal peristalsis (OR 2.2, 95%CI 0.4-11, P=0.014) all predicted development of epithelial metaplasia. Despite the high incidence of esophageal metaplasia, none of the EA patients had suffered esophageal cancer, according to the Finnish Cancer Registry. Although three had had cancer (SIR, 1.0; 95% CI, 0.20-2.8). The overall cancer incidence among adults with repaired EA did not differ from that of the general Finnish population. Current respiratory symptoms occurred in 11% of the patients and 2% of the controls (P<0.001). Of the patients, 16%, and 6% of the controls had doctor-diagnosed asthma (P<0.001). A total of 56% and 70% of the patients and 20% and 50% of the controls had a history of pneumonia and of bronchitis (P<0.001 for both). Respiratory-related impaired quality of life was observable in 11% of the patients in contrast to 6% of the controls (P<0.001). PFT revealed obstruction in 21 of the patients, restriction in 21, and both in 36. A total of 41 had bronchial hyper-responsiveness (BHR) in HCT, and 15 others had an asthma-like response. Thoracotomy-induced rib fusion (OR 3.4, 95%CI 1.3-8.7, P=0.01) and GER-associated epithelial metaplasia in adulthood (OR 3.0, 95%CI 1.0-8.9, P=0.05) were the most significant risk factors for restrictive ventilatory defect. Vertebral anomalies were evident in 45 patients, predominating in the cervical spine in 38. The most significant risk factor for the occurrence of vertebral anomalies was any additional anomaly (OR 27, 95%C I8-100). Scoliosis (over 10 degrees) was observable in 56 patients, over 20 degrees in 11, and over 45 degrees in one. In the EA patients, risk for scoliosis over 10 degrees was 13-fold (OR 13, 95%CI 8.3-21) and over 20 degrees, 38-fold (OR 38, 95%CI 14-106) when compared to that of the general population. Thoracotomy-induced rib fusion (OR 3.6, 95%CI 0.7-19) and other associated anomalies (OR 2.1, 95%CI 0.9-2.9) were the strongest predictive factors for scoliosis. Significant esophageal morbidity associated with EA extends into adulthood. No association existed between the esophageal symptoms and histological findings. Surgical complications, increasing age, and impaired esophageal motility predicted development of epithelial metaplasia after repair of EA. According to our data, the risk for esophageal cancer is less than 500-fold that of the general population. However, the overall cancer incidence among adults with repaired EA did not differ from that of the general population. Adults with repaired EA have had significantly more respiratory symptoms and infections, as well as more asthma, and allergies than does the general population. Thoracotomy-induced rib fusion and GER-associated columnar epithelial metaplasia were the most significant risk factors for the restrictive ventilatory defect that occurred in over half the patients. Over half the patients with repaired EA are likely to develop scoliosis. Risk for scoliosis is 13-fold after repair of EA in relation to that of the general population. Nearly half the patients had vertebral anomalies. Most of these deformities were diagnosed neither in infancy nor during growth. The natural history of spinal deformities seems, however, rather benign, with spinal surgery rarely indicated.
Resumo:
Lung cancer accounts for more cancer-related deaths than any other cancer. In Finland, five-year survival ranges from 8% to 13%. The main risk factor for lung cancer is long-term cigarette smoking, but its carcinogenesis requires several other factors. The aim of the present study was to 1) evaluate post-operative quality of life, 2) compare clinical outcomes between minimally invasive and conventional open surgery, 3) evaluate the role of oxidative stress in the carcinogenesis of non-small lung cancer (NSCLC), and 4) to identify and characterise targeted agents for therapeutic and diagnostic use in surgery. For study I, pneumonectomy patients replied to 15D quality of life and baseline dyspnea questionnaires. Study III involved a prospective quality of life assessment using the 15D questionnaire after lobectomy or bi-lobectomy. Study IV was a retrospective comparison of clinical outcomes between 212 patients treated with open thoracotomy and 116 patients who underwent a minimally invasive technique. Study II measured parameters of oxidative metabolism (myeloperoxidase activity, glutathione content and NADPH oxidase activity) and DNA adducts. Study V employed the phage display method and identified a core motif for homing peptides. This method served in cell-binding, cell-localisation, and biodistribution studies. Following both pneumonectomy and lobectomy, NSCLC patients showed significantly decreased long-term quality of life. No significant correlation was noted between post-operative quality of life and pre-operative pulmonary function tests. Women suffered more from increased dyspnea after pneumonectomy which was absent after lobectomy or bi-lobectomy. Patients treated with video-assisted thoracoscopy showed significantly decreased morbidity and shorter periods of hospitalization than did open surgery patients. This improvement was achieved even though the VATS patients were older and suffered more comorbid conditions and poorer pulmonary function. No significant differences in survival were noted between these two groups. An increase in NADPH oxidase activity was noted in tumour samples of both adenocarcinoma and squamous cell carcinoma. This increase was independent from myeloperoxidase activity. Elevated glutathione content was noted in tumour tissue, especially in adenocarcinoma. After panning the clinical tumour samples with the phage display method, an amino acid sequence of ARRPKLD, the Thx, was chosen for further analysis. This method proved selective of tumour tissue in both in vitro and in vivo cell-binding assay, and biodistribution showed tumour accumulation. Because of the significantly reduced quality of life following pneumonectomy, other operative strategies should be implemented as an alternative (e.g. sleeve-lobectomy). To treat this disease, implementation of a minimally invasive surgical technique is safe, and the results showed decreased morbidity and a shorter period of hospitalisation than with thoracotomy. This technique may facilitate operative treatment of elderly patients with comorbid conditions who might otherwise be considered inoperable. Simultaneous exposure to oxidative stress and altered redox states indicates the important role of oxidative stress in the pathogenesis and malignant transformation of NSCLC. The studies showed with great specificity and with favourable biodistribution that Thx peptide is specific to NSCLC tumours. Thx thus shows promise in imaging, targeted therapy, and monitoring of treatment response.
Resumo:
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease with unknown aetiology and poor prognosis. IPF is characterized by alveolar epithelial damage that leads tissue remodelling and ultimately to the loss of normal lung architecture and function. Treatment has been focused on anti-inflammatory therapies, but due to their poor efficacy new therapeutic modalities are being sought. There is a need for early diagnosis and also for differential diagnostic markers for IPF and other interstitial lung diseases. The study utilized patient material obtained from bronchoalveolar lavage (BAL), diagnostic biopsies or lung transplantation. Human pulmonary fibroblast cell cultures were propagated and asbestos-induced pulmonary fibrosis in mice was used as an experimental animal model of IPF. The possible markers for IPF were scanned by immunohistochemistry, RT-PCR, ELISA and western blot. Matrix metalloproteinases (MMPs) are proteolytic enzymes that participate in tissue remodelling. Microarray studies have introduced potential markers that could serve as additional tools for the assessment of IPF and one of the most promising was MMP 7. MMP-7 protein levels were measured in the BAL fluid of patients with idiopathic interstitial lung diseases or idiopathic cough. MMP-7 was however similarly elevated in the BAL fluid of all these disorders and thus cannot be used as a differential diagnostic marker for IPF. Activation of transforming growth factor (TGF)-ß is considered to be a key element in the progression of IPF. Bone morphogenetic proteins (BMP) are negative regulators of intracellular TGF-ß signalling and BMP-4 signalling is in turn negatively regulated by gremlin. Gremlin was found to be highly upregulated in the IPF lungs and IPF fibroblasts. Gremlin was detected in the thickened IPF parenchyma and endothelium of small capillaries, whereas in non-specific interstitial pneumonia it localized predominantly in the alveolar epithelium. Parenchymal gremlin immunoreactivity might indicate IPF-type interstitial pneumonia. Gremlin mRNA levels were higher in patients with end-stage fibrosis suggesting that gremlin might be a marker for more advanced disease. Characterization of the fibroblastic foci in the IPF lungs showed that immunoreactivity to platelet-derived growth factor (PDGF) receptor-α and PDGF receptor-β was elevated in IPF parenchyma, but the fibroblastic foci showed only minor immunoreactivity to the PDGF receptors or the antioxidant peroxiredoxin II. Ki67 positive cells were also observed predominantly outside the fibroblastic foci, suggesting that the fibroblastic foci may not be composed of actively proliferating cells. When inhibition of profibrotic PDGF-signalling by imatinib mesylate was assessed, imatinib mesylate reduced asbestos-induced pulmonary fibrosis in mice as well as human pulmonary fibroblast migration in vitro but it had no effect on the lung inflammation.
Resumo:
In many countries, the prevalence of smoking and smokers average cigarette consumption have decreased, with occasional smoking and daily light smoking (1-4 cigarettes per day, CPD) becoming more common. Despite these changes in smoking patterns, the prevalence of chronic obstructive pulmonary disease (COPD), a disorder characterized by a progressive decline in lung function, continues to rise globally. Smoking is the most important factor causing COPD, however, not all smokers develop the disease. Genetic factors partly explain the inter-individual differences in lung function and susceptibility of some smokers to COPD. No earlier research on the genetic and environmental determinants of lung function or on the phenomenon of light smoking exists in the Finnish population. Further, the association between low-rate smoking patterns and COPD remains partly unknown. This thesis aimed to study the prevalence and consistency of light smoking longitudinally in the Finnish population, to assess the characteristics of light smokers, and to examine the risks of chronic bronchitis and COPD associated with changing smoking patterns over time. A further aim was to estimate longitudinally the proportions of genetic and environmental factors that explain the inter-individual variances in lung function. Data from the Older Finnish Twin Cohort, including same-sex twin pairs born in Finland before 1958, were used. Smoking patterns and chronic bronchitis symptoms were consistently assessed in surveys conducted in 1975, 1981, and 1990. National registry data on reimbursement eligibilities and medication purchases were used to define COPD. Lung function data were obtained from a subsample of the cohort, 217 female twin pairs, who attended spirometry in 2000 and 2003 as part of the Finnish Twin Study on Ageing. The genetic and environmental influences on lung function were estimated by using genetic modeling. This thesis found that light smokers are more often female, well-educated, and exhibit a healthier lifestyle than heavy smokers. At individual level, light smoking is rarely a constant pattern. Light smoking, reducing from heavier smoking to light smoking, and relapsing to light smoking after quitting, are among patterns associated with an increased risk of chronic bronchitis and COPD. Constant light smoking is associated with an increased use of inhaled anticholinergics, a medication for CODP. In addition to smoking, other environmental factors influence lung function in the older age. During a three-year follow-up, new environmental effects influencing spirometry values were observed, whereas the genes affecting lung function remained mostly the same. In conclusion, no safe level of daily smoking exists with regard to pulmonary diseases. Even daily light smoking in middle-age is associated with increased respiratory morbidity later in life. Smoking reduction does not decrease the risk of COPD, and should not be recommended as an alternative to quitting smoking. In elderly people, attention should also be drawn to other factors that can prevent poor lung function.
Resumo:
Atherosclerosis is the main underlying pathology of coronary heart disease. Coronary heart disease is a serious health problem in Finland, and it is the leading cause of morbidity and mortality in industrialized countries. Psychological stress correlates with coronary heart disease events – myocardial infarction and sudden death, which are the most common clinical syndromes of atherosclerotic narrowing of arteries. The present series of studies examines the interaction between stress and endothelial function in relation to atherosclerosis. The study also aims to give new information on the mechanisms through which stress has its effect on atherosclerosis progression, focusing on possible relations between psychological stress and the functioning of the endothelium. Our project is based on data from one of the largest national epidemiological studies, the Cardiovascular Risk in Young Finns study, which has monitored the development of risk factors for coronary heart disease in 3596 young adults since 1980. The present study combines experimental stress research with epidemiology and uses an advanced method for examining atherosclerosis development in healthy subjects (intima-media thickness ultrasound measurement). The physiological parameters used were heart rate, respiratory sinus arrhythmia and pre-ejection period. Chronic stress was assessed by vital exhaustion. The ultrasound measurements that served as the indexes of preclinical atherosclerosis were carotid intima-media thickness, brachial flow-mediated dilatation and carotid artery compliance. The effects of cardiovascular risk factors found to be important were taken into account: serum cholesterols level, triglyceride level, serum insulin level and systolic and diastolic blood pressure. There were 69, 1596, 81 and 1721 participants in studies I-IV, respectively. The results showed that both chronic and acute stress may exert an effect on atherosclerosis in subjects with impaired endothelial responses. The findings are consistent with the idea that risk factors are more harmful if the endothelium is not working properly. Chronic stress was found to be a risk if it has resulted in ineffective cardiac stress reactivity or delayed recovery. Men were shown to be at increased risk for atherosclerotic progression in early life, which suggests men’s decreased stress coping ability in relation to stressful psychosocial coronary risk factors. Autonomic imbalance may be the common mechanism of the stress influence on atherosclerosis development. The results of the present study contain background information for the identification the first stages of atherosclerosis, and they may be useful for preventive medicine programs for young adults and could help to improve cardiovascular health in Finland as well as in other countries.
Resumo:
Goals This study aims to map the effect of interrogative function on the intonation of spontaneous and read Finnish. Earlier research shows that the most prominent feature in Finnish question intonation is an appeal to the listener. Question word questions typically start with a high peak which is followed by falling intonation. In yes/no questions, F0 remains on a high level until the word carrying sentence stress and then falls. Final rises are mainly found in intonation clichés such as "Ai mitä?" ("What?") These earlier results are based on read speech and enacted dialogues. In this study, questions and statements found in spontaneous dialogues were compared. These utterances were also compared with read versions of the same utterances. Fundamental frequency values were compared using a mixed model. Contours were also grouped using auditory and visual inspection. Thus it was possible to compare frequencies of contour types according to utterance type and speech style. The position of questions in the F0 distribution of the whole material was also investigated in this study. Method The material consisted of four spontaneous dialogues and their read versions. The speakers were young adults from the Helsinki metropolitan area, four females and four males. The whole material was first divided into broad dialogue function categories arising from the material and F0 curves were calculated for each category. After this, 277 questions and 244 statements were selected for closer inspection. Values reflecting F0 distribution and contour shape were measured from the F0 contours of these utterances. A mixed model was used to analyse the differences. Utterance type, question type, speech style and speaker gender were used as fixed effects. The frequencies of F0 contour types were compared using a Chi square test. Additional material in this study came from eight young female speakers in central Finland. Results and conclusions In the mixed model analysis, significant differences were found both between questions and statements and between spontaneous and read speech. Generally, utterance type affected the variables reflecting contour type while speech style affected the variables reflecting F0 distribution. The effect of question type was not clearly visible. In read speech the contours resembled earlier results more closely. Speakers had different strategies in differentiating between questions and statements. In the whole material, F0 was slightly higher in questions than in statements. The effect of dialectal background could be seen in the contour types. The results show that interrogative function affects intonation in both spontaneous and read Finnish.
Resumo:
The present study aims to elucidate the modifications in the structure and functionality of the phospholipid matrix of biological membranes brought about by free radical-mediated oxidative damage of its molecular constituents. To this end, the surface properties of two oxidatively modified phospholipids bearing an aldehyde or carboxyl function at the end of truncated sn-2 acyl chain were studied using a Langmuir balance. The results obtained reveal both oxidized species to have a significant impact on the structural dynamics of phospholipid monolayers, as illustrated by the progressive changes in force-area isotherms with increasing mole fraction of the oxidized lipid component. Moreover, surface potential measurements revealed considerable modifications in the electric properties of oxidized phospholipid containing monolayers during film compression, suggesting a packing state-controlled reorientation of the intramolecular electric dipoles of the lipid headgroups and acyl chains. Based on the above findings, a model describing the conformational state of oxidized phospholipid molecules in biological membranes is proposed, involving the protrusion of the acyl chains bearing the polar functional groups out from the hydrocarbon phase to the surrounding aqueous medium. Oxidative modifications alter profoundly the physicochemical properties of unsaturated phospholipids and are therefore readily anticipated to have important implications for their interactions with membrane-associating molecules. Along these lines, the carboxyl group bearing lipid was observed to bind avidly the peripheral membrane protein cytochrome c. The binding was reversed following increase in ionic strength or addition of polyanionic ATP, thus suggesting it to be driven by electrostatic interactions between cationic residues of the protein and the deprotonated lipid carboxyl exposed to the aqueous phase. The presence of aldehyde function bearing oxidized phospholipid was observed to enhance the intercalation of four antimicrobial peptides into phospholipid monolayers and liposomal bilayers. Partitioning of the peptides to monolayers was markedly attenuated by the aldehyde scavenger methoxyamine, revealing it to be mediated by the carbonyl moiety possibly through efficient hydrogen bonding or, alternatively, formation of covalent adduct in form of a Schiff base between the lipid aldehydes and primary amine groups of the peptide molecules. Lastly, both oxidized phospholipid species were observed to bind with high affinity three small membrane-partitioning therapeutic agents, viz. chlorpromazine, haloperidol, and doxorubicin. In conclusion, the results of studies conducted using biomimetic model systems support the notion that oxidative damage influences the molecular architecture as well as the bulk physicochemical properties of phospholipid membranes. Further, common polar functional groups carried by phospholipids subjected to oxidation were observed to act as molecular binding sites at the lipid-water interface. It is thus plausible that oxidized phospholipid species may elicit cellular level effects by modulating integration of various membrane-embedded and surface-associated proteins and peptides, whose conformational state, oligomerization, and functionality is known to be controlled by highly specific lipid-protein interactions and proper physical state of the membrane environment.
Resumo:
Glaucoma is a multifactorial long-term ocular neuropathy associated with progressive loss of the visual field, retinal nerve fiber structural abnormalities and optic disc changes. Like arterial hypertension it is usually a symptomless disease, but if left untreated leads to visual disability and eventual blindness. All therapies currently used aim to lower intraocular pressure (IOP) in order to minimize cell death. Drugs with new mechanisms of action could protect glaucomatous eyes against blindness. Renin-angiotensin system (RAS) is known to regulate systemic blood pressure and compounds acting on it are in wide clinical use in the treatment of hypertension and heart failure but not yet in ophthalmological use. There are only few previous studies concerning intraocular RAS, though evidence is accumulating that drugs antagonizing RAS can also lower IOP, the only treatable risk factor in glaucoma. The main aim of this experimental study was to clarify the expression of the renin-angiotensin system in the eye tissues and to test its potential oculohypotensive effects and mechanisms. In addition, the possible relationship between the development of hypertension and IOP was evaluated in animal models. In conclusion, a novel angiotensin receptor type (Mas), as well as ACE2 enzyme- producing agonists for Mas, were described for the first time in the eye structures participating in the regulation of IOP. In addition, a Mas receptor agonist significantly reduced even normal IOP. The effect was abolished by a specific receptor antagonist. Intraocular, local RAS would thus to be involved in the regulation of IOP, probably even more in pathological conditions such as glaucoma though there was no unambiguous relationship between arterial and ocular hypertension. The findings suggest the potential as antiglaucomatous drugs of agents which increase ACE2 activity and the formation of angiotensin (1-7), or activate Mas receptors.
Resumo:
Increased consumption of low-fat milk products is inversely associated with the risk of hypertension. The beneficial effect of milk on blood pressure is attributed to high calcium and potassium content but also to specific peptide sequences, which are cleaved from milk protein during gastrointestinal digestion, fermentation of milk with proteolytic starter cultures or enzymatic hydrolysis. Milk products fermented with Lactobacillus helveticus contain casein-derived tripeptides isoleucine-proline-proline (Ile-Pro-Pro) and valine-proline-proline (Val-Pro-Pro), which have been shown to possess antihypertensive effects in humans and in experimental animals. The aim of the present series of studies was to investigate the effects of tripeptides Ile-Pro-Pro and Val-Pro-Pro or fermented milk products containing them on vascular function and blood pressure and to elucidate the mechanisms behind them by using different experimental models of hypertension. Another aim was to characterize the acute effects of tripeptides on blood pressure and arterial stiffness in mildly hypertensive humans. Ile-Pro-Pro and Val-Pro-Pro or fermented milk products containing them attenuated the development of hypertension in two experimental models of hypertension, spontaneously hypertensive rat (SHR) and type 2 diabetic Goto-Kakizaki (GK) rat fed with high-salt diet. Significant differences in systolic blood pressure (SBP) were seen after 8 weeks treatment with tripeptide-containing products compared to control product. Plant sterols did not enhance this effect. Two differently produced tripeptide powders produced a similar attenuating effect on SBP in SHR. In mildly hypertensive subjects, a single administration of tripeptide- and plant sterol-containing fermented milk product decreased both SBP and diastolic blood pressure (DBP) over a period of 8 hours. Protective effect of tripeptides Ile-Pro-Pro and Val-Pro-Pro and fermented milk products containing them on vascular function was demonstrated in in vitro studies and long-term experimental studies. The effect was shown to be endothelium-dependent and possibly involving endothelium-derived hyperpolarizing factor (EDHF). In the clinical study, single administration of tripeptide-containing fermented milk product did not affect measures of arterial stiffness. Long-term treatment with fermented milk product containing Ile-Pro-Pro and Val-Pro-Pro inhibited angiotensin-converting enzyme (ACE) and decreased aldosterone levels thus showing beneficial effects on the renin-angiotensin system (RAS) in SHR and GK. No changes in the components of RAS were observed by the single administration of the same product in mildly hypertensive subjects. Increased levels of cGMP, NOx and citrulline suggest increased nitric oxide (NO) production by the tripeptides. Taken together, Ile-Pro-Pro and Val-Pro-Pro -containing products attenuate the development of hypertension after long-term treatment in experimental models of hypertension and possess an acute antihypertensive effect in mildly hypertensive subjects. In addition, these tripeptides show endothelium-mediated beneficial effects on vascular function. Attenuation of blood pressure increase by the tripeptides in experimental animals involves RAS, but its role in the antihypertensive effect in humans remains to be elucidated.
Resumo:
Understanding the process of cell division is crucial for modern cancer medicine due to the central role of uncontrolled cell division in this disease. Cancer involves unrestrained proliferation as a result of cells loosing normal control and being driven through the cell cycle, where they normally would be non-dividing or quiescent. Progression through the cell cycle is thought to be dependent on the sequential activation of cyclin-dependent kinases (Cdks). The full activation of Cdks requires the phosphorylation of a conserved residue (threonine-160 on human Cdk2) on the T-loop of the kinase domain. In metazoan species, a trimeric complex consisting of Cdk7, cyclin H and Mat1 has been suggested to be the T-loop kinase of several Cdks. In addition, Cdk7 have also been implicated in the regulation of transcription. Cdk7, cyclin H, and Mat1 can be found as subunits of general transcription factor TFIIH. Cdk7, in this context, phosphorylates the Carboxy-terminal domain (CTD) of the large subunit of RNA polymerase II (RNA pol II), specifically on serine-5 residues of the CTD repeat. The regulation of Cdk7 in these and other functions is not well known and the unambiguous characterization of the in vivo role of Cdk7 in both T-loop activation and CTD serine-5 phosphorylation has proved challenging. In this study, the fission yeast Cdk7-cyclin H homologous complex, Mcs6-Mcs2, is identified as the in vivo T-loop kinase of Cdk1(Cdc2). It also identifies multiple levels of regulation of Mcs6 kinase activity, i.e. association with Pmh1, a novel fission yeast protein that is the apparent homolog of metazoan Mat1, and T-loop phosphorylation of Mcs6, mediated by Csk1, a monomeric T-loop kinase with similarity to Cak1 of budding yeast. In addition, Skp1, a component of the SCF (Skp1-Cullin-F box protein) ubiquitin ligase is identified by its interactions with Mcs2 and Pmh1. The Skp1 association with Mcs2 and Pmh1 is however SCF independent and does not involve proteolytic degradation but may reflect a novel mechanism to modulate the activity or complex assembly of Mcs6. In addition to Cdk7, also Cdk8 has been shown to have CTD serine-5 kinase activity in vitro. Cdk8 is not essential in yeast but has been shown to function as a transcriptional regulator. The function of Cdk8 is unknown in flies and mammals. This prompted the investigation of murine Cdk8 and its potential role as a redundant CTD serine-5 kinase. We find that Cdk8 is required for development prior to implantation, at a time that is co-incident with a burst of Cdk8 expression during normal development. The results does not support a role of Cdk8 as a serine-5 CTD kinase in vivo but rather shows an unexpected requirement for Cdk8, early in mammalian development. The results presented in this thesis extends our current knowledge of the regulation of the cell cycle by characterizing the function of two distinct cell cycle regulating T-loop kinases, including the unambiguous identification of Mcs6, the fission yeast Cdk7 homolog, as the T-loop kinase of Cdk1. The results also indicate that the function of Mcs6 is conserved from fission yeast to human Cdk7 and suggests novel mechanisms by which the distinct functions of Cdk7 and Mcs6 could be regulated. These findings are important for our understanding of how progression of the cell cycle and proper transcription is controlled, during normal development and tissue homeostasis but also under condition where cells have escaped these control mechanisms e.g. cancer.
Resumo:
The development of many embryonic organs is regulated by reciprocal and sequential epithelial-mesenchymal interactions. These interactions are mediated by conserved signaling pathways that are reiteratively used. Cleidocranial dysplasia (CCD) is a congenital syndrome where both bone and tooth development is affected. The syndrome is characterized by short stature, abnormal clavicles, general bone dysplasia, and supernumerary teeth. CCD is caused by mutations in RUNX2, a transcription factor that is a key regulator of osteoblast differentiation and bone formation. The first aim of this study was to analyse the expression of a family of key signal molecules, Bone morphogenetic protein (Bmp) at different stages of tooth development. Bmps have a variety of functions and they were originally discovered as signals inducing ectopic bone formation. We performed a comparative in situ hybridisation analysis of the mRNA expression of Bmp2-7 from initiation of tooth development to differentiation of dental hard tissues. The expression patterns indicated that the Bmps signal between the epithelial and mesenchymal tissues during initiation and morphogenesis of tooth development, as well as during the differentiation of odontoblasts and ameloblasts. Furthermore, they are also part of the signalling networks whereby the enamel knot regulates the patterning of tooth cusps. The second aim was to study the role of Runx2 during tooth development and thereby to gain better understanding of the pathogenesis of the tooth phenotype in CCD. We analysed the tooth phenotype of Runx2 knockout mice and examined the patterns and regulation of Runx2 gene expression.. The teeth of wild-type and Runx2 mutant mice were compared by several methods including in situ hybridisation, tissue culture, bead implantation experiments, and epithelial-mesenchymal recombination studies. Phenotypic analysis of Runx2 -/- mutant tooth development showed that teeth failed to advance beyond the bud stage. Runx2 expression was restricted to dental mesenchyme between the bud and early bell stages of tooth development and it was regulated by epithelial signals, in particular Fgfs. We searched for downstream targets of Runx2 by comparative in situ hybridisation analysis. The expression of Fgf3 was downregulated in the mesenchyme of Runx2 -/- teeth. Shh expression was absent from the enamel knot in the lower molars of Runx2 -/- and reduced in the upper molars. In conclusion, these studies showed that Runx2 regulates key epithelial-mesenchymal interactions that control advancing tooth morphogenesis and histodifferentiation of the epithelial enamel organ. In addition, in the upper molars of Runx2 mutants extra buddings occured at the palatal side of the tooth bud. We suggest that Runx2 acts as an inhibitor of successional tooth formation by preventing advancing development of the buds. Accordingly, we propose that RUNX2 haploinsuffiency in humans causes incomplete inhibition of successional tooth formation and as a result supernumerary teeth.
Resumo:
Nephrin is a transmembrane protein belonging to the immunoglobulin superfamily and is expressed primarily in the podocytes, which are highly differentiated epithelial cells needed for primary urine formation in the kidney. Mutations leading to nephrin loss abrogate podocyte morphology, and result in massive protein loss into urine and consequent early death in humans carrying specific mutations in this gene. The disease phenotype is closely replicated in respective mouse models. The purpose of this thesis was to generate novel inducible mouse-lines, which allow targeted gene deletion in a time and tissue-specific manner. A proof of principle model for succesful gene therapy for this disease was generated, which allowed podocyte specific transgene replacement to rescue gene deficient mice from perinatal lethality. Furthermore, the phenotypic consequences of nephrin restoration in the kidney and nephrin deficiency in the testis, brain and pancreas in rescued mice were investigated. A novel podocyte-specific construct was achieved by using standard cloning techniques to provide an inducible tool for in vitro and in vivo gene targeting. Using modified constructs and microinjection procedures two novel transgenic mouse-lines were generated. First, a mouse-line with doxycycline inducible expression of Cre recombinase that allows podocyte-specific gene deletion was generated. Second, a mouse-line with doxycycline inducible expression of rat nephrin, which allows podocyte-specific nephrin over-expression was made. Furthermore, it was possible to rescue nephrin deficient mice from perinatal lethality by cross-breeding them with a mouse-line with inducible rat nephrin expression that restored the missing endogenous nephrin only in the kidney after doxycycline treatment. The rescued mice were smaller, infertile, showed genital malformations and developed distinct histological abnormalities in the kidney with an altered molecular composition of the podocytes. Histological changes were also found in the testis, cerebellum and pancreas. The expression of another molecule with limited tissue expression, densin, was localized to the plasma membranes of Sertoli cells in the testis by immunofluorescence staining. Densin may be an essential adherens junction protein between Sertoli cells and developing germ cells and these junctions share similar protein assembly with kidney podocytes. This single, binary conditional construct serves as a cost- and time-efficient tool to increase the understanding of podocyte-specific key proteins in health and disease. The results verified a tightly controlled inducible podocyte-specific transgene expression in vitro and in vivo as expected. These novel mouse-lines with doxycycline inducible Cre recombinase and with rat nephrin expression will be useful for conditional gene targeting of essential podocyte proteins and to study in detail their functions in the adult mice. This is important for future diagnostic and pharmacologic development platforms.