9 resultados para OBSERVER

em Helda - Digital Repository of University of Helsinki


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Humans are a social species with the internal capability to process social information from other humans. To understand others behavior and to react accordingly, it is necessary to infer their internal states, emotions and aims, which are conveyed by subtle nonverbal bodily cues such as postures, gestures, and facial expressions. This thesis investigates the brain functions underlying the processing of such social information. Studies I and II of this thesis explore the neural basis of perceiving pain from another person s facial expressions by means of functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG). In Study I, observing another s facial expression of pain activated the affective pain system (previously associated with self-experienced pain) in accordance with the intensity of the observed expression. The strength of the response in anterior insula was also linked to the observer s empathic abilities. The cortical processing of facial pain expressions advanced from the visual to temporal-lobe areas at similar latencies (around 300 500 ms) to those previously shown for emotional expressions such as fear or disgust. Study III shows that perceiving a yawning face is associated with middle and posterior STS activity, and the contagiousness of a yawn correlates negatively with amygdalar activity. Study IV explored the brain correlates of interpreting social interaction between two members of the same species, in this case human and canine. Observing interaction engaged brain activity in very similar manner for both species. Moreover, the body and object sensitive brain areas of dog experts differentiated interaction from noninteraction in both humans and dogs whereas in the control subjects, similar differentiation occurred only for humans. Finally, Study V shows the engagement of the brain area associated with biological motion when exposed to the sounds produced by a single human being walking. However, more complex pattern of activation, with the walking sounds of several persons, suggests that as the social situation becomes more complex so does the brain response. Taken together, these studies demonstrate the roles of distinct cortical and subcortical brain regions in the perception and sharing of others internal states via facial and bodily gestures, and the connection of brain responses to behavioral attributes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the 1990 s the companies utilizing and producing new information technology, especially so-called new media, were also expected to be forerunners in new forms of work and organization. Researchers anticipated that new, more creative forms of work and the changing content of working life were about to replace old industrial and standardized ways of working. However, research on actual companies in the IT sector revealed a situation where only minor changes to existing organizational forms were seen .Many of the independent companies faced great difficulties trying to survive the rapid changes in the products and production forms in the emerging field. Most of the research on the new media field has been conducted as surveys, and an understanding of the actual everyday work process has remained thin. My research is a longitudinal study of the early phases of one new media company in Finland. The study is an analysis of the challenges the company faced in a rapidly changing business field and the attempts to overcome these challenges. The two main analyses in the study focus on the developmental phases of the company and the disturbances in the production process. Based on these analyses, I study changes and learning at work using the methodological framework of developmental work research. Developmental work research is a Finnish variant of the cultural-historical activity theory applied to the study of learning and transformations at work. The data was gathered over a three-year period of ethnographic fieldwork. I documented the production processes and everyday life in the company as a participant observer. I interviewed key persons, video and audio-taped meetings, followed e-mail correspondence and collected various documents, such as agreements and memos. I developed a systematic method for analyzing the disturbances in the production process by combining the various data sources. The systematic analysis of the disturbances depicted a very complex and only partly managed production process. The production process had a long duration, and no single actor had an understanding of it as a whole. Most of the disturbances had to do with the customer relationships. The nature of the disturbances was latent; they were recognized but not addressed. In the particular production processes that I analyzed, the ending life span of a particular product, a CD-ROM, became obvious. This finding can be interpreted in relation to the developmental phase of the production and the transformation of the field as a whole. Based on the analysis of the developmental phases and the disturbances, I formulate a hypothesis of the contradictions and developmental potentials of the activity studied. The conclusions of the study challenge the existing understanding of how to conceptualize and study organizational learning in production work. Most theories of organizational learning do not address qualitative changes in production nor historical challenges of organizational learning itself. My study opens up a new horizon in understanding organizational learning in a rapidly changing field where a learning culture based on craft or mass production work is insufficient. There is a need for anticipatory and proactive organizational learning. Proactive learning is needed to anticipate the changes in production type, and the life cycles of products.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The earliest stages of human cortical visual processing can be conceived as extraction of local stimulus features. However, more complex visual functions, such as object recognition, require integration of multiple features. Recently, neural processes underlying feature integration in the visual system have been under intensive study. A specialized mid-level stage preceding the object recognition stage has been proposed to account for the processing of contours, surfaces and shapes as well as configuration. This thesis consists of four experimental, psychophysical studies on human visual feature integration. In two studies, classification image a recently developed psychophysical reverse correlation method was used. In this method visual noise is added to near-threshold stimuli. By investigating the relationship between random features in the noise and observer s perceptual decision in each trial, it is possible to estimate what features of the stimuli are critical for the task. The method allows visualizing the critical features that are used in a psychophysical task directly as a spatial correlation map, yielding an effective "behavioral receptive field". Visual context is known to modulate the perception of stimulus features. Some of these interactions are quite complex, and it is not known whether they reflect early or late stages of perceptual processing. The first study investigated the mechanisms of collinear facilitation, where nearby collinear Gabor flankers increase the detectability of a central Gabor. The behavioral receptive field of the mechanism mediating the detection of the central Gabor stimulus was measured by the classification image method. The results show that collinear flankers increase the extent of the behavioral receptive field for the central Gabor, in the direction of the flankers. The increased sensitivity at the ends of the receptive field suggests a low-level explanation for the facilitation. The second study investigated how visual features are integrated into percepts of surface brightness. A novel variant of the classification image method with brightness matching task was used. Many theories assume that perceived brightness is based on the analysis of luminance border features. Here, for the first time this assumption was directly tested. The classification images show that the perceived brightness of both an illusory Craik-O Brien-Cornsweet stimulus and a real uniform step stimulus depends solely on the border. Moreover, the spatial tuning of the features remains almost constant when the stimulus size is changed, suggesting that brightness perception is based on the output of a single spatial frequency channel. The third and fourth studies investigated global form integration in random-dot Glass patterns. In these patterns, a global form can be immediately perceived, if even a small proportion of random dots are paired to dipoles according to a geometrical rule. In the third study the discrimination of orientation structure in highly coherent concentric and Cartesian (straight) Glass patterns was measured. The results showed that the global form was more efficiently discriminated in concentric patterns. The fourth study investigated how form detectability depends on the global regularity of the Glass pattern. The local structure was either Cartesian or curved. It was shown that randomizing the local orientation deteriorated the performance only with the curved pattern. The results give support for the idea that curved and Cartesian patterns are processed in at least partially separate neural systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The prevalence and assessment of neuroleptic-induced movement disorders (NIMDs) in a naturalistic schizophrenia population that uses conventional neuroleptics were studied. We recruited 99 chronic schizophrenic institutionalized adult patients from a state nursing home in central Estonia. The total prevalence of NIMDs according to the diagnostic criteria of the Diagnostic and Statistical Manual of Mental Disorders, 4th edition (DSM-IV) was 61.6%, and 22.2% had more than one NIMD. We explored the reliability and validity of different instruments for measuring these disorders. First, we compared DSM-IV with the established observer rating scales of Barnes Akathisia Rating Scale (BARS), Simpson-Angus Scale (SAS) (for neuroleptic-induced parkinsonism, NIP) and Abnormal Involuntary Movement Scale (AIMS) (for tardive dyskinesia), all three of which have been used for diagnosing NIMD. We found a good overlap of cases for neuroleptic-induced akathisia (NIA) and tardive dyskinesia (TD) but somewhat poorer overlap for NIP, for which we suggest raising the commonly used threshold value of 0.3 to 0.65. Second, we compared the established observer rating scales with an objective motor measurement, namely controlled rest lower limb activity measured by actometry. Actometry supported the validity of BARS and SAS, but it could not be used alone in this naturalistic population with several co-existing NIMDs. It could not differentiate the disorders from each other. Quantitative actometry may be useful in measuring changes in NIA and NIP severity, in situations where the diagnosis has been made using another method. Third, after the relative failure of quantitative actometry to show diagnostic power in a naturalistic population, we explored descriptive ways of analysing actometric data, and demonstrated diagnostic power pooled NIA and pseudoakathisia (PsA) in our population. A subjective question concerning movement problems was able to discriminate NIA patients from all other subjects. Answers to this question were not selective for other NIMDs. Chronic schizophrenia populations are common worldwide, NIMD affected two-thirds of our study population. Prevention, diagnosis and treatment of NIMDs warrant more attention, especially in countries where typical antipsychotics are frequently used. Our study supported the validity and reliability of DSM-IV diagnostic criteria for NIMD in comparison with established rating scales and actometry. SAS can be used with minor modifications for screening purposes. Controlled rest lower limb actometry was not diagnostically specific in our naturalistic population with several co-morbid NIMDs, but it may be sensitive in measuring changes in NIMDs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The greatest effect on reducing mortality in breast cancer comes from the detection and treatment of invasive cancer when it is as small as possible. Although mammography screening is known to be effective, observer errors are frequent and false-negative cancers can be found in retrospective studies of prior mammograms. In the year 2001, 67 women with 69 surgically proven cancers detected at screening in the Mammography Centre of Helsinki University Hospital had previous mammograms as well. These mammograms were analyzed by an experienced screening radiologist, who found that 36 lesions were already visible in previous screening rounds. CAD (Second Look v. 4.01) detected 23 of these missed lesions. Eight readers with different kinds of experience with mammography screening read the films of 200 women with and without CAD. These films included 35 of those missed lesions and 16 screen-detected cancers. CAD sensitivity was 70.6% and specificity 15.8%. Use of CAD lengthened the mean time spent for readings but did not significantly affect readers sensitivities or specificities. Therefore the use of applied version of CAD (Second Look v. 4.01) is questionable. Because none of those eight readers found exactly same cancers, two reading methods were compared: summarized independent reading (at least a single cancer-positive opinion within the group considered decisive) and conference consensus reading (the cancer-positive opinion of the reader majority was considered decisive). The greatest sensitivity of 74.5% was achieved when the independent readings of 4 best-performing readers were summarized. Overall the summarized independent readings were more sensitive than conference consensus readings (64.7% vs. 43.1%) while there was far less difference in mean specificities (92.4% vs. 97.7%). After detecting suspicious lesion, the radiologist has to decide what is the most accurate, fast, and cost-effective means of further work-up. The feasibility of FNAC and CNB in the diagnosis of breast lesions was compared in non-randomised, retrospective study of 580 (503 malignant) breast lesions of 572 patients. The absolute sensitivity for CNB was better than for FNAC, 96% (206/214) vs. 67% (194/289) (p < 0.0001). An additional needle biopsy or surgical biopsy was performed for 93 and 62 patients with FNAC, but for only 2 and 33 patients with CNB. The frequent need of supplement biopsies and unnecessary axillary operations due to false-positive findings made FNAC (294 ) more expensive than CNB (223 ), and because the advantage of quick analysis vanishes during the overall diagnostic and referral process, it is recommendable to use CNB as initial biopsy method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Speech has both auditory and visual components (heard speech sounds and seen articulatory gestures). During all perception, selective attention facilitates efficient information processing and enables concentration on high-priority stimuli. Auditory and visual sensory systems interact at multiple processing levels during speech perception and, further, the classical motor speech regions seem also to participate in speech perception. Auditory, visual, and motor-articulatory processes may thus work in parallel during speech perception, their use possibly depending on the information available and the individual characteristics of the observer. Because of their subtle speech perception difficulties possibly stemming from disturbances at elemental levels of sensory processing, dyslexic readers may rely more on motor-articulatory speech perception strategies than do fluent readers. This thesis aimed to investigate the neural mechanisms of speech perception and selective attention in fluent and dyslexic readers. We conducted four functional magnetic resonance imaging experiments, during which subjects perceived articulatory gestures, speech sounds, and other auditory and visual stimuli. Gradient echo-planar images depicting blood oxygenation level-dependent contrast were acquired during stimulus presentation to indirectly measure brain hemodynamic activation. Lip-reading activated the primary auditory cortex, and selective attention to visual speech gestures enhanced activity within the left secondary auditory cortex. Attention to non-speech sounds enhanced auditory cortex activity bilaterally; this effect showed modulation by sound presentation rate. A comparison between fluent and dyslexic readers' brain hemodynamic activity during audiovisual speech perception revealed stronger activation of predominantly motor speech areas in dyslexic readers during a contrast test that allowed exploration of the processing of phonetic features extracted from auditory and visual speech. The results show that visual speech perception modulates hemodynamic activity within auditory cortex areas once considered unimodal, and suggest that the left secondary auditory cortex specifically participates in extracting the linguistic content of seen articulatory gestures. They are strong evidence for the importance of attention as a modulator of auditory cortex function during both sound processing and visual speech perception, and point out the nature of attention as an interactive process (influenced by stimulus-driven effects). Further, they suggest heightened reliance on motor-articulatory and visual speech perception strategies among dyslexic readers, possibly compensating for their auditory speech perception difficulties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An efficient and statistically robust solution for the identification of asteroids among numerous sets of astrometry is presented. In particular, numerical methods have been developed for the short-term identification of asteroids at discovery, and for the long-term identification of scarcely observed asteroids over apparitions, a task which has been lacking a robust method until now. The methods are based on the solid foundation of statistical orbital inversion properly taking into account the observational uncertainties, which allows for the detection of practically all correct identifications. Through the use of dimensionality-reduction techniques and efficient data structures, the exact methods have a loglinear, that is, O(nlog(n)), computational complexity, where n is the number of included observation sets. The methods developed are thus suitable for future large-scale surveys which anticipate a substantial increase in the astrometric data rate. Due to the discontinuous nature of asteroid astrometry, separate sets of astrometry must be linked to a common asteroid from the very first discovery detections onwards. The reason for the discontinuity in the observed positions is the rotation of the observer with the Earth as well as the motion of the asteroid and the observer about the Sun. Therefore, the aim of identification is to find a set of orbital elements that reproduce the observed positions with residuals similar to the inevitable observational uncertainty. Unless the astrometric observation sets are linked, the corresponding asteroid is eventually lost as the uncertainty of the predicted positions grows too large to allow successful follow-up. Whereas the presented identification theory and the numerical comparison algorithm are generally applicable, that is, also in fields other than astronomy (e.g., in the identification of space debris), the numerical methods developed for asteroid identification can immediately be applied to all objects on heliocentric orbits with negligible effects due to non-gravitational forces in the time frame of the analysis. The methods developed have been successfully applied to various identification problems. Simulations have shown that the methods developed are able to find virtually all correct linkages despite challenges such as numerous scarce observation sets, astrometric uncertainty, numerous objects confined to a limited region on the celestial sphere, long linking intervals, and substantial parallaxes. Tens of previously unknown main-belt asteroids have been identified with the short-term method in a preliminary study to locate asteroids among numerous unidentified sets of single-night astrometry of moving objects, and scarce astrometry obtained nearly simultaneously with Earth-based and space-based telescopes has been successfully linked despite a substantial parallax. Using the long-term method, thousands of realistic 3-linkages typically spanning several apparitions have so far been found among designated observation sets each spanning less than 48 hours.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

According to certain arguments, computation is observer-relative either in the sense that many physical systems implement many computations (Hilary Putnam), or in the sense that almost all physical systems implement all computations (John Searle). If sound, these arguments have a potentially devastating consequence for the computational theory of mind: if arbitrary physical systems can be seen to implement arbitrary computations, the notion of computation seems to lose all explanatory power as far as brains and minds are concerned. David Chalmers and B. Jack Copeland have attempted to counter these relativist arguments by placing certain constraints on the definition of implementation. In this thesis, I examine their proposals and find both wanting in some respects. During the course of this examination, I give a formal definition of the class of combinatorial-state automata , upon which Chalmers s account of implementation is based. I show that this definition implies two theorems (one an observation due to Curtis Brown) concerning the computational power of combinatorial-state automata, theorems which speak against founding the theory of implementation upon this formalism. Toward the end of the thesis, I sketch a definition of the implementation of Turing machines in dynamical systems, and offer this as an alternative to Chalmers s and Copeland s accounts of implementation. I demonstrate that the definition does not imply Searle s claim for the universal implementation of computations. However, the definition may support claims that are weaker than Searle s, yet still troubling to the computationalist. There remains a kernel of relativity in implementation at any rate, since the interpretation of physical systems seems itself to be an observer-relative matter, to some degree at least. This observation helps clarify the role the notion of computation can play in cognitive science. Specifically, I will argue that the notion should be conceived as an instrumental rather than as a fundamental or foundational one.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

According to the most prevalent view, there are 3-4 fixed "slots" in visual working memory for temporary storage. Recently this view has been challenged with a theory of dynamic resources which are restricted in their totality but can be freely allocated. The aim of this study is to clarify which one of the theories better describes the performance in visual working memory tasks with contour shapes. Thus in this study, the interest is in both the number of recalled stimuli and the precision of the memory representations. Stimuli in the experiments were radial frequency patterns, which were constructed by sinusoidally modulating the radius of a circle. Five observers participated in the experiment and it consisted of two different tasks. In the delayed discrimination task the number of recalled stimuli was measured with 2-interval forced choice task. Observer was shown serially two displays with 1, 5 s ISI (inter stimulus interval). Displays contained 1-6 patterns and they differed from each other with changed amplitude in one pattern. The participant s task was to report whether the changed pattern had higher amplitude in the first or in the second interval. The amount of amplitude change was defined with QUEST-procedure and the 75 % discrimination threshold was measured in the task. In the recall task the precision of the memory representations was measured with subjective adjustment method. First, observer was shown 1-6 patterns and after 1, 5 s ISI one location of the previously shown pattern was cued. Observer s task was to adjust amplitude of a probe pattern to match the amplitude of the pattern in working memory. In the delayed discrimination task the performance of all observes declined smoothly when the number of presented patterns was increased. The result supports the resource theory of working memory as there was no sudden fall in the performance. The amplitude threshold for one item was 0.01 0.05 and as the number of items increased from 1 to 6 there was a 4 15 -fold linear increase in the amplitude threshold (0.14 0.29). In the recall adjustment task the precision of four observers performance declined smoothly as the number of presented patterns was increased. The result also supports the resource theory. The standard deviation for one item was 0.03 0.05 and as the number of items increased from 1 to 6 there was a 2 3 -fold linear increase in the amplitude threshold (0.06 0.11). These findings show that the performance in a visual working memory task is described better according to the theory of freely allocated resources and not to the traditional slot-model. In addition, the allocation of the resources depends on the properties of the individual observer and the visual working memory task.