18 resultados para Nitrogen fertilizer

em Helda - Digital Repository of University of Helsinki


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dissertation focuses on the recognition of the problems of uneven regional development in Finland in the 1950s, and the way the idea of controlling this development was introduced to Finnish politics. Since it is often stated that Finnish regional policy only began in the mid-1960s, the period at hand is considered to fall in the time before regional policy. However, various ideas, plans and projects of regional development as well as different aims of development were brought forward and discussed already in the 1950s. These give an interesting perspective to the ideas of later regional development. In the 1950s, many Finnish politicians became more conscious of the unavoidable societal change. The need for overall modernisation of the society made it reasonable to expect a growing level of unemployment and eagerness to migration. The uneven distribution of well-being was also feared to cause discontent and political changes. International experience proved interfering in the regional development possible when using the argument of public interest ; the measures taken increased the level of well-being, helped sustain societal balance, and supported national economy. Many of the development projects of the 1950s focused on Northern Finland, the natural resources of which were considered an important reserve and the political climate of which was regarded unstable. After the late 1940s, regional development was discussed frequently both on the national and the regional level. Direct and indirect support was given to less developed areas and the government outlined thorough investigations in order to relieve the regional problem. Towards the end of the decade, the measures taken were already often connected to the idea of equality. In the 1950s the conflicts within and between the largest Finnish political parties significantly affected the decisions of regional development. There are three case studies in this qualitative research based on the narrative method. The case studies clarify the characteristics of the 1950s regional development. In the first one, the representatives of the northern region and the state first discuss the location of a state-run nitrogen fertilizer factory and later the location of a new university. In the second, the aims and perspectives of private entrepreneurs and the state collide due to ideas of statist industrialisation projects and later due to an idea of a tax relief targeting northern industry. In the third case, the main role is given to the changing rural areas, in relation to which societal development and urbanisation were often measured. The regional development of the 1950s laid groundwork for the new, more established regional policy. The early problem solving actions were aimed both at the prevailing situation and the future and thus showed the way for the upcoming actions. Regional development policy existed already before regional policy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitrogen (N) is one of the main inputs in cereal cultivation and as more than half of the arable land in Finland is used for cereal production, N has contributed substantially to agricultural pollution through fertilizer leaching and runoff. Based on this global phenomenon, the European Community has launched several directives to reduce agricultural emissions to the environment. Trough such measures, and by using economic incentives, it is expected that northern European agricultural practices will, in the future, include reduced N fertilizer application rates. Reduced use of N fertilizer is likely to decrease both production costs and pollution, but could also result in reduced yields and quality if crops experience temporary N deficiency. Therefore, more efficient N use in cereal production, to minimize pollution risks and maximize farmer income, represents a current challenge for agronomic research in the northern growing areas. The main objective of this study was to determine the differences in nitrogen use efficiency (NUE) among spring cereals grown in Finland. Additional aims were to characterize the multiple roles of NUE by analysing the extent of variation in NUE and its component traits among different cultivars, and to understand how other physiological traits, especially radiation use efficiency (RUE) and light interception, affect and interact with the main components of NUE and contribute to differences among cultivars. This study included cultivars of barley (Hordeum vulgare L.), oat (Avena sativa L.) and wheat (Triticum aestivum L.). Field experiments were conducted between 2001 and 2004 at Jokioinen, in Finland. To determine differences in NUE among cultivars and gauge the achievements of plant breeding in NUE, 17-18 cultivars of each of the three cereal species released between 1909 and 2002 were studied. Responses to nitrogen of landraces, old cultivars and modern cultivars of each cereal species were evaluated under two N regimes (0 and 90 kg N ha-1). Results of the study revealed that modern wheat, oat and barley cultivars had similar NUE values under Finnish growing conditions and only results from a wider range of cultivars indicated that wheat cultivars could have lower NUE than the other species. There was a clear relationship between nitrogen uptake efficiency (UPE) and NUE in all species whereas nitrogen utilization efficiency (UTE) had a strong positive relationship with NUE only for oat. UTE was clearly lower in wheat than in other species. Other traits related to N translocation indicated that wheat also had a lower harvest index, nitrogen harvest index and nitrogen remobilisation efficiency and therefore its N translocation efficiency was confirmed to be very low. On the basis of these results there appears to be potential and also a need for improvement in NUE. These results may help understand the underlying physiological differences in NUE and could help to identify alternative production options, such as the different roles that species can play in crop rotations designed to meet the demands of modern agricultural practices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Volatilization of ammonia (NH3) from animal manure is a major pathway for nitrogen (N) losses that cause eutrophication, acidification, and other environmental hazards. In this study, the effect of alternative techniques of manure treatment (aeration, separation, addition of peat) and application (broadcast spreading, band spreading, injection, incorporation by harrowing) on ammonia emissions in the field and on nitrogen uptake by ley or cereals was studied. The effect of a mixture of slurry and peat on soil properties was also investigated. The aim of this study was to find ways to improve the utilization of manure nitrogen and reduce its release to the environment. Injection into the soil or incorporation by harrowing clearly reduced ammonia volatilization from slurry more than did the surface application onto a smaller area by band spreading or reduction of the dry matter of slurry by aeration or separation. Surface application showed low ammonia volatilization, when pig slurry was applied to tilled bare clay soil or to spring wheat stands in early growth stages. Apparently, the properties of both slurry and soil enabled the rapid infiltration and absorption of slurry and its ammoniacal nitrogen by the soil. On ley, however, surface-applied cattle slurry lost about half of its ammoniacal nitrogen. The volatilization of ammonia from surface-applied peat manure was slow, but proceeded over a long period of time. After rain or irrigation, the peat manure layer on the soil surface retarded evaporation. Incorporation was less important for the fertilizer effect of peat manure than for pig slurry, but both manures were more effective when incorporated. Peat manure applications increase soil organic matter content and aggregate stability. Stubble mulch tillage hastens the effect in surface soil compared with ploughing. The apparent recovery of ammoniacal manure nitrogen in crop yield was higher with injection and incorporation than with surface applications. This was the case for leys as well as for spring cereals, even though ammonia losses from manures applied to cereals were relatively low with surface applications as well. The ammoniacal nitrogen of surface-applied slurry was obviously adsorbed by the very surface soil and remained mostly unavailable to plant roots in the dry soil. Supplementing manures with inorganic fertilizer nitrogen, which adds plant-available nitrogen to the soil at the start of growth, increased the overall recovery of applied nitrogen in crop yields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Disadvantages of invariable cereal cropping, concern of nutrient leaching and prices of nitrogen (N) fertilizer have all increased during last decades. An undersown crop, which grows together with a main crop and after harvest, could mitigate all those questions. The aim of this study was to develop undersowing in Finnish conditions, so that it suits for spring cereal farming as well as possible and enhances taking care of soil and environment, especially when control of N is concerned. In total, 17 plant species were undersown in spring cereals during the field experiments between 1991-1999 at four sites in South and Central Finland, but after selection, eight of them were studied more thoroughly. Two legumes, one grass species and one mixture of them were included in long-term trials in order to study annually repeated undersowing. Further, simultaneous broadcasting of seeds instead of separate undersowing was studied. Grain yield response and the capacity of the undersown crop to absorb soil N or fix N from atmosphere, and the release of N were of greatest interest. Seeding rates of undersown crops and N fertilization rates during annually repeated undersowing were also studied. Italian ryegrass (Lolium multiflorum Lam., IR) absorbed soil nitrate N (NO3-N) most efficiently in autumn and timothy (Phleum pratense L.) in spring. The capacity of other grass species to absorb N was low, or it was insufficient considering the negative effect on grain yield. Red clover (Trifolium pratense L.) and white clover (Trifolium repens L.) suited well in annually repeated undersowing, supplying fixed N for cereals without markedly increased risk of N leaching. Autumn oriented growth rhythm of the studied legumes was optimal for undersowing, whereas the growth rhythm of grasses was less suited but varied between species. A model of adaptive undersowing system was outlined in order to emphasize allocation of measures according needs. After defining the goal of undersowing, many decisions are to be done. When diminishing N leaching is primarily sought, a mixture of IR and timothy is advantageous. Clovers suit for replacing N fertilization, as the positive residual effect is greater than the negative effect caused by competition. A mixture of legume and non legume is a good choice when increased diversity is the main target. Seeding rate is an efficient means for adjusting competition and N effects. Broadcasting with soil covering equipment can be used to establish an undersown crop. In addition, timing and method of cover crop termination have an important role in the outcome. Continuous observing of the system is needed as for instance conditions significantly affect growth of undersown crop and on the other hand N release from crop residues may increase in long run.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to explore soil microbial activities related to C and N cycling and the occurrence and concentrations of two important groups of plant secondary compounds, terpenes and phenolic compounds, under silver birch (Betula pendula Roth), Norway spruce (Picea abies (L.) Karst) and Scots pine (Pinus sylvestris L.) as well as to study the effects of volatile monoterpenes and tannins on soil microbial activities. The study site, located in Kivalo, northern Finland, included ca. 70-year-old adjacent stands dominated by silver birch, Norway spruce and Scots pine. Originally the soil was very probably similar in all three stands. All forest floor layers (litter (L), fermentation layer (F) and humified layer (H)) under birch and spruce showed higher rates of CO2 production, greater net mineralisation of nitrogen and higher amounts of carbon and nitrogen in microbial biomass than did the forest floor layers under pine. Concentrations of mono-, sesqui-, di- and triterpenes were higher under both conifers than under birch, while the concentration of total water-soluble phenolic compounds as well as the concentration of condensed tannins tended to be higher or at least as high under spruce as under birch or pine. In general, differences between tree species in soil microbial activities and in concentrations of secondary compounds were smaller in the H layer than in the upper layers. The rate of CO2 production and the amount of carbon in the microbial biomass correlated highly positively with the concentration of total water-soluble phenolic compounds and positively with the concentration of condensed tannins. Exposure of soil to volatile monoterpenes and tannins extracted and fractionated from spruce and pine needles affected carbon and nitrogen transformations in soil, but the effects were dependent on the compound and its molecular structure. Monoterpenes decreased net mineralisation of nitrogen and probably had a toxic effect on part of the microbial population in soil, while another part of the microbes seemed to be able to use monoterpenes as a carbon source. With tannins, low-molecular-weight compounds (also compounds other than tannins) increased soil CO2 production and nitrogen immobilisation by soil microbes while the higher-molecular-weight condensed tannins had inhibitory effects. In conclusion, plant secondary compounds may have a great potential in regulation of C and N transformations in forest soils, but the real magnitude of their significance in soil processes is impossible to estimate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In agricultural systems which rely on organic sources of nitrogen (N), of which the primary source is biological N fixation (BNF), it is extremely important to use N as efficiently as possible with minimal losses to the environment. The amount of N through BNF should be maximised and the availability of the residual N after legumes should be synchronised to the subsequent plant needs in the crop rotation. Six field experiments in three locations in Finland were conducted in 1994-2006 to determine the productivity and amount of BNF in red clover-grass leys of different ages. The residual effects of the leys for subsequent cereals as well as the N leaching risk were studied by field measurements and by simulation using the CoupModel. N use efficiency (NUE) and N balances were also calculated. The yields of red clover-grass leys were highest in the two-year-old leys (6 700 kg ha-1) under study, but the differences between 2- and 3-year old leys were not high in most cases. BNF (90 kg ha-1 in harvested biomass) correlated strongly with red clover dry matter yield, as the proportion of red clover N derived from the atmosphere (> 85%) was high in our conditions of organically farmed field with low soil mineral N. A red clover content of over 40% in dry matter is targeted to avoid negative N-balances and to gain N for the subsequent crop. Surprisingly, the leys had no significant effect on the yields and N uptake of the two subsequent cereals (winter rye or spring wheat, followed by spring oats). On the other hand, yield and C:N of leys, as well as BNF-N and total-N incorporated into the soil influenced on subsequent cereal yields. NUE of cereals from incorporated ley crop residues was rather high, varying from 30% to 80% (mean 48%). The mineral N content of soil in the profile of 0-90 cm was low, mainly 15-30 kg ha-1. Simulation of N dynamics by CoupModel functioned satisfactorily and is considered a useful tool to estimate N flows in cropping systems relying on organic N sources. Understanding the long-term influence of cultivation history and soil properties on N dynamics remains to be a challenge to further research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The commodity plastics that are used in our everyday lives are based on polyolefin resins and they find wide variety of applications in several areas. Most of the production is carried out in catalyzed low pressure processes. As a consequence polymerization of ethene and α-olefins has been one of the focus areas for catalyst research both in industry and academia. Enormous amount of effort have been dedicated to fine tune the processes and to obtain better control of the polymerization and to produce tailored polymer structures The literature review of the thesis concentrates on the use of Group IV metal complexes as catalysts for polymerization of ethene and branched α-olefins. More precisely the review is focused on the use of complexes bearing [O,O] and [O,N] type ligands which have gained considerable interest. Effects of the ligand framework as well as mechanical and fluxional behaviour of the complexes are discussed. The experimental part consists mainly of development of new Group IV metal complexes bearing [O,O] and [O,N] ligands and their use as catalysts precursors in ethene polymerization. Part of the experimental work deals with usage of high-throughput techniques in tailoring properties of new polymer materials which are synthesized using Group IV complexes as catalysts. It is known that the by changing the steric and electronic properties of the ligand framework it is possible to fine tune the catalyst and to gain control over the polymerization reaction. This is why in this thesis the complex structures were designed so that the ligand frameworks could be fairly easily modified. All together 14 complexes were synthesised and used as catalysts in ethene polymerizations. It was found that the ligand framework did have an impact within the studied catalyst families. The activities of the catalysts were affected by the changes in complex structure and also effects on the produced polymers were observed: molecular weights and molecular weight distributions were depended on the used catalyst structure. Some catalysts also produced bi- or multi-modal polymers. During last decade high-throughput techniques developed in pharmaceutical industries have been adopted into polyolefin research in order to speed-up and optimize the catalyst candidates. These methods can now be regarded as established method suitable for both academia and industry alike. These high-throughput techniques were used in tailoring poly(4-methyl-1-pentene) polymers which were synthesized using Group IV metal complexes as catalysts. This work done in this thesis represents the first successful example where the high-throughput synthesis techniques are combined with high-throughput mechanical testing techniques to speed-up the discovery process for new polymer materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fungi have a fundamental role in carbon and nutrient transformations in the acids soils of boreal regions, such as peatlands, where high amounts of carbon (C) and nutrients are stored in peat, the pH is relatively low and the nutrient uptake of trees is highly dependent on mycorrhizae. In this thesis, the aim was to examine nitrogen (N) transformations and the availability of dissolved N compounds in forestry-drained peatlands, to compare the fungal community biomass and structure at various peat N levels, to investigate the growth of ectomycorrhizal fungi with variable P and K availability and to assess how the ectomycorrhizal fungi (ECM) affect N transformations. Both field and laboratory experiments were carried out. The peat N concentration did not affect the soil fungal community structure within a site. Phosphorus (P) and potassium (K) deficiency of the trees as well as the degree of decomposition and dissolved organic nitrogen (DON) concentration of the peat were shown to affect the fungal community structure and biomass of ECMs, highlighting the complexity of the below ground system on drained peatlands. The biomass of extrametrical mycorrhizal mycelia (EMM) was enhanced by P and/or K deficiency of the trees, and ECM biomass in the roots was increased by P deficiency. Thus, PK deficiency in drained peatlands may increase the allocation of C by the tree to ECMs. It was also observed that fungi can alter N mineralization processes in the rhizosphere but variously depending on fungal species and fertility level of peat. Gross N mineralization did not vary but the net N mineralization rate significantly increased along the N gradient in both field and laboratory experiments. Gross N immobilization also significantly increased when the peat N concentration increased. Nitrification was hardly detectable in either field or laboratory experiments. During the growing season, dissolved inorganic N (DIN) fluctuated much more than the relatively stable DON. Special methodological challenges associated with sampling and analysis in microbial studies on peatlands are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lihaluujauho muodostaa maatilojen myytävien kasvi- ja eläinperäisten tuotteiden jälkeen tärkeimmän agroekosysteemeistä poispäin suuntautuvan ravinnevirran. Se sisältää runsaasti pääkasvinravinteita typpeä, fosforia ja kalsiumia (N ~8%, P ~5%, Ca yleensä ~10-15% luuaineksen määrästä riippuen), sekä kaliumia n.1% tai alle. Lihaluujauho on todettu tehokkaaksi lannoitteeksi useilla viljelykasveilla ja sen käyttö on sallittu myös luomuviljelyssä EU-alueella. Lihaluujauhoon ja erityisesti sen rehukäyttöön liittyvistä riskeistä merkittävin on TSE-tautien riski (naudan BSE-, lampaiden ja vuohien scrapie-, sekä ihmisen vCJD-taudit). Rehukäyttöä on monissa maissa rajoitettu 1980-luvulla puhjenneen BSE-kriisin myötä. BSE-taudin leviäminen yhdistettiin tilanteeseen, jossa nautaperäistä lihaluujauhoa käytettiin nautaeläinten rehun ainesosana. Myös lihaluujauhon käytössä turkiseläinrehuna saattaa piillä BSE:n tai muun TSE-taudin riski. Oikein käsitellyn lihaluujauhon lannoitekäyttöön ei kuitenkaan näytä tarkastelemieni tutkimusten perusteella sisältyvän huomattavaa TSEriskiä, jos huolehditaan asianmukaisista varotoimista ja menettelyistä sekä tuotteen valmistusprosessissa, että käytettäessä lannoitetta. Lihaluujauhon lannoitekäytön lisääminen edistäisi ruokajärjestelmämme ravinnekierron sulkemista etenkin fosforin osalta. Lihaluujauho on uusiutuva luonnonvara, jonka lannoitekäytöllä voitaisiin korvata huomattava osa lannoiteaineena kulutettavista fosforipitoisista kiviaineista. Sokerijuurikkaan lannoituskokeissa Varsinais-Suomen Kaarinassa vuosina 2008 ja 2009 lihaluujauhokäsittelyt eivät menestyneet aivan yhtä hyvin satotasovertailussa kuin kontrollikäsittelyiden NPK-väkilannoitteet, mutta laatuominaisuuksiltaan (sokeripitoisuus, amino-N, K, ja Na-pitoisuudet) joiltakin osin kontrollikäsittelyjä paremmin. Kokeissa käytetyt lajikkeet olivat ’Jesper’ vuonna 2008 ja ’Lincoln’ vuonna 2009. Käytetty lihaluujauholannoite oli Honkajoki Oy:n Viljo Yleislannoite 8-4-3, joka sisälsi noin 10% kaliumsulfaatin ja kasviperäisten sivutuotteiden seosta. Viljo-lannoitetta käytettiin sekä yksistään, että yhdistettynä 10-25%:iin väkilannoitetta. Vuoden 2009 Viljo-koejäseniin vielä lisättiin kaliumsulfaattilannoitetta (42% K, 18% S), jotta päästiin annetun kaliumin määrässä päästiin lannoitussuosituksen (60 kg K/ha) tasolle. Pelkkä Viljo-lannoite tuotti merkitsevästi alhaisemmat sadot kuin kontrollikäsittelyt molempina vuosina. Kuitenkin kun Viljolannoitteen ohella käytettiin väkilannoitetta (10-25% kasvin typentarpeesta) päästiin varsin lähelle kontrollikäsittelyiden satotasoja. Myös pelkän LLJ-lannoitteen tuottamat satotasot olivat kuitenkin selvästi paremmat kuin Suomen keskimääräiset juurikassadot. Viljo-käsittelyillä oli selvästi positiivinen vaikutus laatutekijöihin amino-N, K ja Na vuonna 2008, mutta vuonna 2009 näiden pitoisuudet jäivät kontrollikäsittelyjen tasolle. Viljo-käsittelyiden sokeripitoisuudet olivat vuonna 2008 kontrollikäsittelyn luokkaa ja Viljo77%+NK1:n osalta kontrollia merkitsevästi paremmat. Vuoden 2009 sokeripitoisuudet olivat kaikilla koejäsenillä erinomaiset, ja käsittelyiden välillä ei ilmennyt merkitseviä eroja. Kokeiden perusteella kaliumsulfaatilla täydennetty lihaluujauho on hyvin toimiva lannoite sokerijuurikkaalla Suomen olosuhteissa, etenkin yhdistettynä väkilannoitteeseen.