126 resultados para Net ecosystem production
em Helda - Digital Repository of University of Helsinki
Resumo:
Lakes serve as sites for terrestrially fixed carbon to be remineralized and transferred back to the atmosphere. Their role in regional carbon cycling is especially important in the Boreal Zone, where lakes can cover up to 20% of the land area. Boreal lakes are often characterized by the presence of a brown water colour, which implies high levels of dissolved organic carbon from the surrounding terrestrial ecosystem, but the load of inorganic carbon from the catchment is largely unknown. Organic carbon is transformed to methane (CH4) and carbon dioxide (CO2) in biological processes that result in lake water gas concentrations that increase above atmospheric equilibrium, thus making boreal lakes as sources of these important greenhouse gases. However, flux estimates are often based on sporadic sampling and modelling and actual flux measurements are scarce. Thus, the detailed temporal flux dynamics of greenhouse gases are still largely unknown. ----- One aim here was to reveal the natural dynamics of CH4 and CO2 concentrations and fluxes in a small boreal lake. The other aim was to test the applicability of a measuring technique for CO2 flux, i.e. the eddy covariance (EC) technique, and a computational method for estimation of primary production and community respiration, both commonly used in terrestrial research, in this lake. Continuous surface water CO2 concentration measurements, also needed in free-water applications to estimate primary production and community respiration, were used over two open water periods in a study of CO2 concentration dynamics. Traditional methods were also used to measure gas concentration and fluxes. The study lake, Valkea-Kotinen, is a small, humic, headwater lake within an old-growth forest catchment with no local anthropogenic disturbance and thus possible changes in gas dynamics reflect the natural variability in lake ecosystems. CH4 accumulated under the ice and in the hypolimnion during summer stratification. The surface water CH4 concentration was always above atmospheric equilibrium and thus the lake was a continuous source of CH4 to the atmosphere. However, the annual CH4 fluxes were small, i.e. 0.11 mol m-2 yr-1, and the timing of fluxes differed from that of other published estimates. The highest fluxes are usually measured in spring after ice melt but in Lake Valkea-Kotinen CH4 was effectively oxidised in spring and highest effluxes occurred in autumn after summer stratification period. CO2 also accumulated under the ice and the hypolimnetic CO2 concentration increased steadily during stratification period. The surface water CO2 concentration was highest in spring and in autumn, whereas during the stable stratification it was sometimes under atmospheric equilibrium. It showed diel, daily and seasonal variation; the diel cycle was clearly driven by light and thus reflected the metabolism of the lacustrine ecosystem. However, the diel cycle was sometimes blurred by injection of hypolimnetic water rich in CO2 and the surface water CO2 concentration was thus controlled by stratification dynamics. The highest CO2 fluxes were measured in spring, autumn and during those hypolimnetic injections causing bursts of CO2 comparable with the spring and autumn fluxes. The annual fluxes averaged 77 (±11 SD) g C m-2 yr-1. In estimating the importance of the lake in recycling terrestrial carbon, the flux was normalized to the catchment area and this normalized flux was compared with net ecosystem production estimates of -50 to 200 g C m-2 yr-1 from unmanaged forests in corresponding temperature and precipitation regimes in the literature. Within this range the flux of Lake Valkea-Kotinen yielded from the increase in source of the surrounding forest by 20% to decrease in sink by 5%. The free water approach gave primary production and community respiration estimates of 5- and 16-fold, respectively, compared with traditional bottle incubations during a 5-day testing period in autumn. The results are in parallel with findings in the literature. Both methods adopted from the terrestrial community also proved useful in lake studies. A large percentage of the EC data was rejected, due to the unfulfilled prerequisites of the method. However, the amount of data accepted remained large compared with what would be feasible with traditional methods. Use of the EC method revealed underestimation of the widely used gas exchange model and suggests simultaneous measurements of actual turbulence at the water surface with comparison of the different gas flux methods to revise the parameterization of the gas transfer velocity used in the models.
Resumo:
Continuing urbanization is a crucial driver of land transformation, having widespread impacts on virtually all ecosystems. Terrestrial ecosystems, including disturbed ones, are dependent on soils, which provide a multitude of ecosystem services. As soils are always directly and/or indirectly impacted through land transformation, land cover change causes soil change. Knowledge of ecosystem properties and functions in soils is increasing in importance as humans continue to concentrate into already densely-populated areas. Urban soils often have hampered functioning due to various disturbances resulting from human activity. Innovative solutions are needed to bring the lacking ecosystem services and quality of life to these urban environments. For instance, the ecosystem services of the urban green infrastructure may be substantially improved through knowledge of their functional properties. In the research forming this thesis, the impacts of four plant species (Picea abies, Calluna vulgaris, Lotus corniculatus and Holcus lanatus) on belowground biota and regulatory ecosystem services were investigated in two different urban soil types. The retention of inorganic nitrogen and phosphorus in the plant-soil system, decomposition of plant litter, primary production, and the degradation of polycyclic aromatic hydrocarbons (PAHs) were examined in the field and under laboratory conditions. The main objective of the research was to determine whether the different plant species (representing traits with varying litter decomposability) will give rise to dissimilar urban belowground communities with differing ecological functions. Microbial activity as well as the abundance of nematodes and enchytraeid worm biomass was highest below the legume L. corniculatus. L. corniculatus and the grass H. lanatus, producing labile or intermediate quality litter, enhanced the proportion of bacteria in the soil rhizosphere, while the recalcitrant litter-producing shrub C. vulgaris and the conifer P. abies stimulated the growth of fungi. The loss of nitrogen from the plant-soil system was small for H. lanatus and the combination of C. vulgaris + P. abies, irrespective of their energy channel composition. These presumably nitrogen-conservative plant species effectively diminished the leaching losses from the plant-soil systems with all the plant traits present. The laboratory experiment revealed a difference in N allocation between the plant traits: C. vulgaris and P. abies sequestered significantly more N in aboveground shoots in comparison to L. corniculatus and H. Lanatus. Plant rhizosphere effects were less clear for phosphorus retention, litter decomposition and the degradation of PAH compounds. This may be due to the relatively short experimental durations, as the maturation of the plant-soil system is likely to take a considerably longer time. The empirical studies of this thesis demonstrated that the soil communities rapidly reflect changes in plant coverage, and this has consequences for the functionality of soils. The energy channel composition of soils can be manipulated through plants, which was also supported by the results of the separate meta-analysis conducted in this thesis. However, further research is needed to understand the linkages between the biological community properties and ecosystem services in strongly human-modified systems.
Resumo:
Northern peatlands are thought to store one third of all soil carbon (C). Besides the C sink function, peatlands are one of the largest natural sources of methane (CH4) to the atmosphere. Climate change may affect the C gas dynamics as well as the labile C pool. Because the peatland C sequestration and CH4 emissions are governed by high water levels, changes in hydrology are seen as the driving factor in peatland ecosystem change. This study aimed to quantify the carbon dioxide (CO2) and CH4 dynamics of a fen ecosystem at different spatial scales: plant community components scale, plant community scale and ecosystem scale, under hydrologically normal and water level drawdown conditions. C gas exchange was measured in two fens in southern Finland applying static chamber and eddy covariance techniques. During hydrologically normal conditions, the ecosystem was a CO2 sink and CH4 source to the atmosphere. Sphagnum mosses and sedges were the most important contributors to the community photosynthesis. The presence of sedges had a major positive impact on CH4 emissions while dwarf shrubs had a slightly attenuating impact. C fluxes varied considerably between the plant communities. Therefore, their proportions determined the ecosystem scale fluxes. An experimental water level drawdown markedly reduced the photosynthesis and respiration of sedges and Sphagnum mosses and benefited shrubs. Consequently, changes were smaller at the ecosystem scale than at the plant group scale. The decrease in photosynthesis and the increase in respiration, mostly peat respiration, made the fen a smaller CO2 sink. CH4 fluxes were significantly lowered, close to zero. The impact of natural droughts was similar to, although more modest than, the impact of the experimental water level drawdown. The results are applicable to the short term impacts of the water level drawdown and to climatic conditions in which droughts become more frequent.
Resumo:
In the European Union, conventional cages for laying hens will be faded out at the beginning of 2012. The rationale behind this is a public concern over animal welfare in egg production. As alternatives to conventional cages, the European Union Council Directive 1999/74/EC allows non-cage systems and enriched (furnished) cages. Layer performance, behavior, and welfare in differently sized furnished cages have been investigated quite widely during recent decades, but nutrition of hens in this production system has received less attention. This thesis aims to compare production and feed intake of laying hens in furnished and conventional cages and to study the effects of different dietary treatments in these production systems, thus contributing to the general knowledge of furnished cages as an egg production system. A furnished cage model for 8 hens was compared with a 3-hen conventional cage. Three consecutive experiments each studied one aspect of layer diet: The first experiment investigated the effects of dietary protein/energy ratio, the second dietary energy levels, and the third the effects of extra limestone supplementation. In addition, a fourth experiment evaluated the effects of perches on feed consumption and behavior of hens in furnished cages. The dietary treatments in experiments 1 3 generally had similar effects in the two cage types. Thus, there was no evidence supporting a change in nutrient requirements for laying hens when conventional cages are replaced with small-group furnished cages. Moreover, the results from nutritional experiments conducted in conventional cages can be applied to small-group furnished cage systems. These results support the view that production performance comparable with conventional cages can be achieved in furnished cages. All of the advantages of cages for bird welfare are sustained in the small-group furnished cages used here. In addition, frequent use of perches and nests implies a wider behavioral repertoire in furnished cages than in conventional cages. The increase observed in bone ash content may improve bird welfare in furnished cages. The presence of perches diminished feed consumption during the prelaying period and enhanced the feed conversion ratio during the early laying period in furnished cages. However, as the presence or absence of perches in furnished cages had no significant effect on feed consumption after the prelaying period, the lower feed consumption observed in furnished cages than in conventional cages could be attributed to other factors, such as the presence of wood shavings or a nest box. The wider feed trough space per hen in conventional than in furnished cages may partly explain the higher feed consumption observed in conventional cages.
Resumo:
Naked oat (Avena sativa f.sp. nuda L.) is the highest quality cereal in northern growing conditions. However the cultivation area of naked oat is remarkably small. Major challenges for naked oat production are to observe its nakedness. The caryopsis of naked oat is sensitive to mechanical damage at harvest, especially at high grain moisture content. The greater the grain moisture content of naked oat at harvest, the more loses of germination capacity was caused by threshing. For producing high quality naked oat seed, it is recommended that harvesting be done at as low grain moisture content as possible. However, if this is not possible, better germination can be ensure with gentle harvest by reducing the cylinder speed. In spite of conventional oat s excellent fat and amino acid composition in animal feed use, as far as nutritional value is concerned, the total energy yield of oat is weaker than other cereals because of the hulls. Also with naked oat the dehulling is not complete, while hull content on different cultivars mostly varied between one to six percent. In addition to genotype, environmental conditions markedly control the expression of nakedness. Thresher settings had only limited effects on hull content. The function of hulls is to protect the groat, but this was confirmed only for Finnish, small grain, cultivar Lisbeth. The oat kernel is generally covered with fine silky hairs termed trichomes. The trichomes of naked oat are partly lost during threshing and handling of grains. Trichomes can cause itchiness in those handling the grains and also accumulate and form fine dust and can block-up machinery. The cultivars differed considerably in pubescence. Some thresher settings, including increased cylinder speed, slightly increased grain polishing such that grains had some areas completely free of trichomes. Adjusting thresher settings was generally not an efficient means of solving the problems associated with naked oat trichomes. The main differences in cultivation costs between naked and conventional oat lie in the amount of seeds required and the drying costs. The main differences affecting the economic result lie in market prices, yield level and feed value. The results indicate that naked oat is financially more profitable than conventional oat, when the crop is sold at a specific price at all yield levels and when the crop is used as feed at highest yield level. At lower yield levels, conventional oat is, in spite of its lower feed value, the more profitable option for feed use. Dehulled oat did not achieve the same economic result as naked oat, as the cost of dehulling, including the hull waste, was considerable. According to this study naked oat can be cultivated successfully under northern conditions, when taking into consideration the soft, naked grain through cultivation chain.
Resumo:
The main objective of this thesis was to elucidate the effects of regrowth grass silage and red clover silage on nutrient supply and milk production of dairy cows as compared with primary growth grass silages. In the first experiment (publication I), two primary growth and four regrowth grass silages were harvested at two stages of growth. These six silages were fed to 24 lactating dairy cows with two levels of concentrate allowance. Silage intake and energy corrected milk yield (ECM) responses, and the range in these response variables between the diets, were smaller when regrowth silages rather than primary growth silages were fed. Milk production of dairy cows reflected the intake of metabolizable energy (ME), and no differences in the ME utilization were found between the diets based on silages harvested from primary growth and regrowth. The ECM response to increased concentrate allowance was, on average, greater when regrowth rather than primary growth silages were fed. In the second experiment (publication II), two silages from primary growth and two from regrowth used in I were fed to rumen cannulated lactating dairy cows. Cows consumed less feed dry matter (DM), energy and protein, and produced less milk, when fed diets based on regrowth silages rather than primary growth silages. Lower milk production responses of regrowth grass silage diets were mainly due to the lower silage DM intake, and could not be accounted for by differences in energy or protein utilization. Regrowth grass silage intake was not limited due to neutral detergent fibre (NDF) digestion or rumen fill or passage kinetics. However, lower intake may be at least partly attributable to plant diseases such as leaf spot infections, dead deteriorating material or abundance of weeds, which are all higher in regrowth compared with primary growth, and increase with advancing regrowth. In the third experiment (publications III and IV), red clover silages and grass silages harvested at two stages of growth, and a mixed diet of red clover and grass silages, were fed to five rumen cannulated lactating dairy cows. In spite of the lower average ME intake for red clover diets, the ECM production remained unchanged suggesting more efficient utilisation of ME for red clover diets compared with grass diets. Intake of N, and omasal canal flows of total non-ammonia N (NAN), microbial and non-microbial NAN were higher for red clover than for grass silage diets, but were not affected by forage maturity. Delaying the harvest tended to decrease DM intake of grass silage and increase that of red clover silage. The digestion rate of potentially digestible NDF was faster for red clover diets than for grass silage diets. Delaying the harvest decreased the digestion rate for grass but increased it for red clover silage diets. The low intake of early-cut red clover silage could not be explained by silage digestibility, fermentation quality, or rumen fill but was most likely related to the nutritionally suboptimal diet composition because inclusion of moderate quality grass silage in mixed diet increased silage DM intake. Despite the higher total amino acid supply of cows fed red clover versus grass silage diets, further milk production responses on red clover diets were possibly compromised by an inadequate supply of methionine as evidenced by lower methionine concentration in the amino acid profile of omasal digesta and plasma. Increasing the maturity of ensiled red clover does not seem to affect silage DM intake as consistently as that of grasses. The efficiency of N utilization for milk protein synthesis was lower for red clover diets than for grass diets. It was negatively related to diet crude protein concentration similarly to grass silage diets.
Resumo:
Vasikoiden kasvatus yksilökarsinoissa, imemismahdollisuuden puute maitojuoton yhteydessä sekä pienet juomamäärät ovat tekijöitä, jotka mahdollisesti voivat vähentää vasikoiden hyvinvointia. Vasikoiden kasvatukseen etsitäänkin uusia tapoja, joissa eläinten käyttäytymistarpeet ja hyvinvointi otetaan entistä paremmin huomioon. Tässä väitöskirjassa vasikoiden kasvatusta on tarkasteltu sekä tuotannon että vasikoiden käyttäytymisen ja hyvinvoinnin kannalta. Väitöskirja koostuu kolmesta kokeesta, joista ensimmäisessä tutkittiin vasikoiden kasvatusta ryhmäkarsinoissa ulkona tai sisällä ja vasikoiden kasvatusta sisällä ryhmä- tai yksilökarsinoissa. Toisessa kokeessa vasikoiden annettiin imeä emiään rajoitetusti lypsyn jälkeen viiden tai kahdeksan viikon ajan ja kolmannessa selvitettiin vasikoiden veden juontia, kun vasikat saivat juomarehua vapaasti. Lisäksi kokeiden yhdistetystä aineistosta analysoitiin eri rehujen syöntimäärien suhdetta sekä rehujen vaikutusta kasvuun ennen ja jälkeen maidosta vieroituksen. Tutkimuksessa todettiin, että vasikoita voi ryhmässä kasvattaa kylmissä ja vaihtelevissa sääoloissa ulkona, kunhan ne hoidetaan ja ruokitaan erittäin huolellisesti. Kylmällä ilmalla vasikat saattavat kuitenkin syödä väkirehua vähemmän varsinkin, jos ruokailupaikka on ulkona ja makuualue sisällä. Ryhmässä kasvaneet vasikat aloittivat sekä kuivien rehujen syönnin että märehtimisen nuorempina kuin yksilökarsinassa kasvaneet. Ryhmissä esiintyvää käyttäytymisongelmaa, toisten vasikoiden imemistä, voidaan vähentää hoito- ja ruokintamenetelmillä. Annettaessa vasikoiden imeä emiään rajoitetusti lypsyn jälkeen vasikat oppivat imemään emiään hyvin nopeasti. Lypsytyö vaikeutui muutamien lehmien kohdalla, sillä ne pidättivät maitoa lypsettäessä. Saadessaan imeä rajoitetusti vasikat imivät suurehkoja maitomääriä kerrallaan. Vieroittaminen suurilta maitomääriltä viiden viikon iässä oli kuitenkin liian aikaista, koska vasikat eivät vielä syöneet riittävästi kuivia rehuja. Vieroitus emästä niin viiden kuin kahdeksankin viikon iässä aiheutti vasikoissa levottomuutta ja ääntelyn lisääntymistä. Saadessaan hapatettua juomarehua vapaasti vasikat joivat keskimäärin vain vähän vettä, olipa vesilähteenä avoin ämpäri tai vesinippa. Vasikoiden välillä oli suurta vaihtelua veden juontimäärissä. Viikkoa ennen maidosta vieroitusta vasikat joivat 0-3 l vettä päivässä. Vasikat joivat nipasta kerrallaan vähemmän vettä kuin ämpäristä, ja käyttivät enemmän aikaa päivässä veden juomiseen kuin vesiämpäristä juoneet vasikat. Suurin osa vasikoista joi vettä juomanipoista erikoisella tavalla esimerkiksi painamalla nippaa otsalla ja juomalla tippuvaa vettä. Vesinipat voivat olla siis vasikoille joko vaikeita tai epämukavia käyttää. Vasikoiden juoman maitomäärän lisääntyessä kasvu lisääntyy selvästi. Runsas maidon juominen vähentää kuitenkin kuivien rehujen syöntiä ja vieroitusvaiheessa kasvu voi hidastua. Vasikat olisikin tärkeää vieroittaa vähitellen, ettei muutoksia kasvuun tulisi. Syönti- ja kasvutulokset eivät aina anna oikeaa kuvaa kasvatusmenetelmien eroista eläinten hyvinvoinnin kannalta. Käyttäytyminen on herkkä hyvinvoinnin mittari ja se tulisikin aina huomioida eri kasvatusmenetelmiä arvioitaessa. .
Resumo:
The sustainability of food production has increasingly attracted the attention of consumers, farmers, food and retailing companies, and politicians. One manifestation of such attention is the growing interest in organic foods. Organic agriculture has the potential to enhance the ecological modernisation of food production by implementing the organic method as a preventative innovation that simultaneously produces environmental and economic benefits. However, in addition to the challenges to organic farming, the small market share of organic products in many countries today and Finland in particular risks undermining the achievement of such benefits. The problems identified as hindrances to the increased consumption of organic food are the poor availability, limited variety and high prices of organic products, the complicated buying decisions and the difficulties in delivering the intangible value of organic foods. Small volumes and sporadic markets, high costs, lack of market information, as well as poor supply reliability are obstacles to increasing the volume of organic production and processing. These problems shift the focus from a single actor to the entire supply chain and require solutions that involve more interaction among the actors within the organic chain. As an entity, the organic food chain has received very little scholarly attention. Researchers have mainly approached the organic chain from the perspective of a single actor, or they have described its structure rather than the interaction between the actors. Consequently, interaction among the primary actors in organic chains, i.e. farmers, manufacturers, retailers and consumers, has largely gone unexamined. The purpose of this study is to shed light on the interaction of the primary actors within a whole organic chain in relation to the ecological modernisation of food production. This information is organised into a conceptual framework to help illuminate this complex field. This thesis integrates the theories and concepts of three approaches: food system studies, supply chain management and ecological modernisation. Through a case study, a conceptual system framework will be developed and applied to a real life-situation. The thesis is supported by research published in four articles. All examine the same organic chains through case studies, but each approaches the problem from a different, complementary perspective. The findings indicated that regardless of the coherent values emphasising responsibility, the organic chains were loosely integrated to operate as a system. The focus was on product flow, leaving other aspects of value creation largely aside. Communication with consumers was rare, and none of the actors had taken a leading role in enhancing the market for organic products. Such a situation presents unsuitable conditions for ecological modernisation of food production through organic food and calls for contributions from stakeholders other than those directly involved in the product chain. The findings inspired a revision of the original conceptual framework. The revised framework, the three-layer framework , distinguishes the different layers of interaction. By gradually enlarging the chain orientation the different but interrelated layers become visible. A framework is thus provided for further research and for understanding practical implications of the performance of organic food chains. The revised framework provides both an ideal model for organic chains in relation to ecological modernisation and demonstrates a situation consistent with the empirical evidence.