56 resultados para Mite-plant interactions
em Helda - Digital Repository of University of Helsinki
Resumo:
Throughout the history of Linnean taxonomy, species have been described with varying degrees of justification. Many descriptions have been based on only a few ambiguous morphological characters. Moreover, species have been considered natural, well-defined units whereas higher taxa have been treated as disparate, non-existent creations. In the present thesis a few such cases were studied in detail. Often the species-level descriptions were based on only a few specimens and the variation previously thought to be interspecific was found to be intraspecific. In some cases morphological characters were sufficient to resolve the evolutionary relationships between the taxa, but generally more resolution was gained by the addition of molecular evidence. However, both morphological and molecular data were found to be deceptive in some cases. The DNA sequences of morphologically similar specimens were found to differ distinctly in some cases, whereas in other closely related species the morphology of specimens with identical DNA sequences differed substantially. This study counsels caution when evolutionary relationships are being studied utilizing only one source of evidence or a very limited number of characters (e.g. barcoding). Moreover, it emphasizes the importance of high quality data as well as the utilization of proper methods when making scientific inferences. Properly conducted analyses produce robust results that can be utilized in numerous interesting ways. The present thesis considered two such extensions of systematics. A novel hypothesis on the origin of bioluminescence in Elateriformia beetles is presented, tying it to the development of the clicking mechanism in the ancestors of these animals. An entirely different type of extension of systematics is the proposed high value of the white sand forests in maintaining the diversity of beetles in the Peruvian Amazon. White sand forests are under growing pressure from human activities that lead to deforestation. They were found to harbor an extremely diverse beetle fauna and many taxa were specialists living only in this unique habitat. In comparison to the predominant clay soil forests, considerably more elateroid beetles belonging to all studied taxonomic levels (species, genus, tribus, and subfamily) were collected in white sand forests. This evolutionary diversity is hypothesized to be due to a combination of factors: (1) the forest structure, which favors the fungus-plant interactions important for the elateroid beetles, (2) the old age of the forest type favoring survival of many evolutionary lineages and (3) the widespread distribution and fragmentation of the forests in the Miocene, favoring speciation.
Resumo:
Natural products constitute an important source of new drugs. The bioavailability of the drugs depends on their absorption, distribution, metabolism and elimination. To achieve good bioavailability, the drug must be soluble in water, stable in the gastrointestinal tract and palatable. Binding proteins may improve the solubility of drug compounds, masking unwanted properties, such as bad taste, bitterness or toxicity, transporting or protecting these compounds during processing and storage. The focus of this thesis was to study the interactions, including ligand binding and the effect of pH and temperature, of bovine and reindeer β-lactoglobulin (βLG) with such compounds as retinoids, phenolic compounds as well as with compounds from plant extracts, and to investigate the transport properties of the βLG-ligand complex. To examine the binding interactions of different ligands to βLG, new methods were developed. The fluorescence binding method for the evaluation of ligand binding to βLG was miniaturized from a quartz cell to a 96-well plate. A method of ultrafiltration sampling combined with high-performance liquid chromatography was developed to assess the binding of compounds from extracts. The interactions of phenolic compounds or retinoids and βLG were investigated using the 96-well plate method. The majority of flavones, flavonols, flavanones and isoflavones and all of the retinoids included were shown to bind to bovine and reindeer βLG. Phenolic compounds, contrary to retinol, were not released at acidic pH. Those results suggest that βLG may have more binding sites, probably also on the surface of βLG. An extract from Camellia sinensis (L.) O. Kunze (black tea), Urtica dioica L. (nettle) and Piper nigrum (black pepper) were used to evaluate whether βLG could bind compounds from plant extracts. Piperine from P. nigrum was found to bind tightly and rutin from U. dioica weakly to βLG. No components from C. sinensis bound to βLG in our experiment. The uptake and membrane permeation of bovine and reindeer βLG, free and bound with retinol, palmitic acid and cholesterol, were investigated using Caco-2 cell monolayers. Both bovine and reindeer βLG were able to cross the Caco-2 cell membrane. Free and βLG-bound retinol and palmitic acid were transported equally, whereas cholesterol could not cross the Caco-2 cell monolayer free or bound to βLG. Our results showed that βLG can bind different natural product compounds, but cannot enhance transport of retinol, palmitic acid or cholesterol through Caco-2 cells. Despite this, βLG, as a water-soluble binding protein, may improve the solubility of natural compounds, possibly protecting them from early degradation and transporting some of them through the stomach. Furthermore, it may decrease their bad or bitter taste during oral administration of drugs or in food preparations. βLG can also enhance or decrease the health benefits of herbal teas and food preparations by binding compounds from extracts.
Resumo:
The development of biotechnology techniques in plant breeding and the new commercial applications have raised public and scientific concerns about the safety of genetically modified (GM) crops and trees. To find out the feasibility of these new technologies in the breeding of commercially important Finnish hardwood species and to estimate the ecological risks of the produced transgenic plants, the experiments of this study have been conducted as a part of a larger project focusing on the risk assessment of GM-trees. Transgenic Betula pendula and Populus trees were produced via Agrobacterium mediated transformation. Stilbene synthase (STS) gene from pine (Pinus sylvestris) and chitinase gene from sugar beet (Beta vulgaris) were transferred to (hybrid) aspen and birch, respectively, to improve disease resistance against fungal pathogens. To modify lignin biosynthesis, a 4-coumarate:coenzyme A ligase (4CL) gene fragment in antisense orientation was introduced into two birch clones. In in vitro test, one transgenic aspen line expressing pine STS gene showed increased resistance to decay fungus Phellinus tremulae. In the field, chitinase transgenic birch lines were more susceptible to leaf spot (Pyrenopeziza betulicola) than the non-transgenic control clone while the resistance against birch rust (Melampsoridium betulinum) was improved. No changes in the content or composition of lignin were detected in the 4CL antisense birch lines. In order to evaluate the ecological effects of the produced GM trees on non-target organisms, an in vitro mycorrhiza experiment with Paxillus involutus and a decomposition experiment in the field were performed. The expression of a transgenic chitinase did not disturb the establishment of mycorrhizal symbiosis between birch and P. involutus in vitro. 4CL antisense transformed birch lines showed retarded root growth but were able to form normal ectomycorrhizal associations with the mycorrhizal fungus in vitro. 4CL lines also showed normal litter decomposition. Unexpected growth reductions resulting from the gene transformation were observed in chitinase transgenic and 4CL antisense birch lines. These results indicate that genetic engineering can provide a tool in increasing disease resistance in Finnish tree species. More extensive data with several ectomycorrhizal species is needed to evaluate the consequences of transgene expression on beneficial plant-fungus symbioses. The potential pleiotropic effects of the transgene should also be taken into account when considering the safety of transgenic trees.
Resumo:
Rhizoctonia spp. are ubiquitous soil inhabiting fungi that enter into pathogenic or symbiotic associations with plants. In general Rhizoctonia spp. are regarded as plant pathogenic fungi and many cause root rot and other plant diseases which results in considerable economic losses both in agriculture and forestry. Many Rhizoctonia strains enter into symbiotic mycorrhizal associations with orchids and some hypovirulent strains are promising biocontrol candidates in preventing host plant infection by pathogenic Rhizoctonia strains. This work focuses on uni- and binucleate Rhizoctonia (respectively UNR and BNR) strains belonging to the teleomorphic genus Ceratobasidium, but multinucleate Rhizoctonia (MNR) belonging to teleomorphic genus Thanatephorus and ectomycorrhizal fungal species, such as Suillus bovinus, were also included in DNA probe development work. Strain specific probes were developed to target rDNA ITS (internal transcribed spacer) sequences (ITS1, 5.8S and ITS2) and applied in Southern dot blot and liquid hybridization assays. Liquid hybridization was more sensitive and the size of the hybridized PCR products could be detected simultaneously, but the advantage in Southern hybridization was that sample DNA could be used without additional PCR amplification. The impacts of four Finnish BNR Ceratorhiza sp. strains 251, 266, 268 and 269 were investigated on Scot pine (Pinus sylvestris) seedling growth, and the infection biology and infection levels were microscopically examined following tryphan blue staining of infected roots. All BNR strains enhanced early seedling growth and affected the root architecture, while the infection levels remained low. The fungal infection was restricted to the outer cortical regions of long roots and typical monilioid cells detected with strain 268. The interactions of pathogenic UNR Ceratobasidium bicorne strain 1983-111/1N, and endophytic BNR Ceratorhiza sp. strain 268 were studied in single or dual inoculated Scots pine roots. The fungal infection levels and host defence-gene activity of nine transcripts [phenylalanine ammonia lyase (pal1), silbene synthase (STS), chalcone synthase (CHS), short-root specific peroxidase (Psyp1), antimicrobial peptide gene (Sp-AMP), rapidly elicited defence-related gene (PsACRE), germin-like protein (PsGER1), CuZn- superoxide dismutase (SOD), and dehydrin-like protein (dhy-like)] were measured from differentially treated and un-treated control roots by quantitative real time PCR (qRT-PCR). The infection level of pathogenic UNR was restricted in BNR- pre-inoculated Scots pine roots, while UNR was more competitive in simultaneous dual infection. The STS transcript was highly up-regulated in all treated roots, while CHS, pal1, and Psyp1 transcripts were more moderately activated. No significant activity of Sp-AMP, PsACRE, PsGER1, SOD, or dhy-like transcripts were detected compared to control roots. The integrated experiments presented, provide tools to assist in the future detection of these fungi in the environment and to understand the host infection biology and defence, and relationships between these interacting fungi in roots and soils. This study further confirms the complexity of the Rhizoctonia group both phylogenetically and in their infection biology and plant host specificity. The knowledge obtained could be applied in integrated forestry nursery management programmes.
Resumo:
The main aim of my thesis project was to assess the impact of elevated ozone (O3) and carbon dioxide (CO2) on the growth, competition and community of meadow plants in northern Europe. The thesis project consisted of three separate O3 and CO2 exposure experiments that were conducted as open-top-chamber (OTC) studies at Jokioinen, SW Finland, and a smaller-scale experiment with different availabilities of resources in greenhouses in Helsinki. The OTC experiments included a competition experiment with two- and three-wise interactions, a mesocosm-scale meadow community with a large number of species, and a pot experiment that assessed intraspecific differences of Centaurea jacea ecotypes. The studied lowland hay meadow proved to be an O3-sensitive biotope, as the O3 concentrations used (40-50 ppb) were moderate, and yet, six out of nine species (Campanula rotundifolia, Centaurea jacea, Fragaria vesca, Ranunculus acris, Trifolium medium, Vicia cracca) showed either significant reductions in biomass or reproductive development, visible O3 injury or any two as a response to elevated O3. The plant species and ecotypes exhibited large intra- and interspecific variation in their response to O3, but O3 and CO2 concentrations did not cause changes in their interspecific competition or in community composition. However, the largest O3-induced growth reductions were seen in the least abundant species (C. rotundifolia and F. vesca), which may indicate O3-induced suppression of weak competitors. The overall effects of CO2 were relatively small and mainly restricted to individual species and several measured variables. Based on the present studies, most of the deleterious effects of tropospheric O3 are not diminished by a moderate increase in CO2 under low N availability, and variation exists between different species and variables. The present study indicates that the growth of several herb species decreases with increasing atmospheric O3 concentrations, and that these changes may pose a threat to the biodiversity of meadows. Ozone-induced reductions in the total community biomass production and N pool are likely to have important consequences for the nutrient cycling of the ecosystem.
Resumo:
Oksidatiivisen stressin eli liiallisen reaktiivisten happiyhdisteiden määrän soluissa on jo pitkään arveltu olevan tärkeä Alzheimerin taudin kehittymiseen ja etenemiseen vaikuttava tekijä. Tämän vuoksi kiinnostus erilaisten antioksidanttien (yhdisteitä, jotka neutraloivat näitä happiradikaaleja soluissa) mahdollisia terapeuttisia ominaisuuksia Alzheimerin taudin hoidossa on tutkittu laajalti. Tähän mennessä ei kuitenkaan ole vielä onnistuttu löytämään antioksidanttia, joka olisi hyödyksi Alzheimerin taudin hoidossa. Tämän vuoksi on tärkeää pyrkiä löytämään uusia antioksidanttien lähteitä sekä tutkia niistä löytyviä aktiivisia yhdisteitä. Kiinnostus luonnon antioksidantteja kohtaan on kasvanut voimakkaasti viime aikoina. Huomio on kiinnittynyt erityisesti aromaattisista sekä lääkekasveista löytyviin antioksidantteihin. Lamiaceae- perheeseen kuuluvia tuoksuampiaisyrttiä (Dracocephalum moldavica L.) ja sitruunamelissaa (Melissa officinalis L.) on käytetty Iranissa pitkään sekä ruoanlaitossa että lääkinnässä, minkä vuoksi näiden kasvien uutteiden antioksidanttisisältöä päätettiin analysoida käyttäen useaa erilaista in vitro- menetelmää. Näissä kokeissa ilmeni, että uutteilla oli useita antioksidanttisia vaikutuksia. Näistä antioksidanttisista vaikutuksista vastaavia yhdisteitä pyrittiin tunnistamaan käyttäen HPLC-PDA- tekniikkaa, minkä seurauksena niiden havaittiin sisältävän erilaisia polyfenoleita, kuten hydroksyloituneita bentsoeeni- ja cinnamamidihapon johdannaisia sekä flavonoideja. Kummankin kasvin uutteissa runsaimmin esiintynyt yhdiste oli rosmariinihappo. Sitruunamelissaa (M. officinalis) on käytetty antiikin ajoista alkaen kognitiivisten toimintojen häiriöiden hoidossa. Perustuen tietoon kasvin käytöstä perinteisessä lääkinnässä, sen tehoa Alzheimerin taudin hoidossa on tutkittu viime aikoina kliinisin kokein. Sitruunamelissan todettiinkin olevan hyödyksi lievää ja keskivaikeaa Alzheimeimerin tautia sairastavien potilaiden hoidossa. Väitöskirjan osanan olevasta kooste-artikkelista käy ilmi, että tutkimalla lääkekasvien ominaisuuksia voidaan saada arvokkaita suuntaa-antavia vihjeitä Alzheimerin taudin lääkehoidon kehittämiseen. Tämän perusteella päätettiinkin testatata myös sitruunamelissauutteen kykyä estää asetyylikoliiniesteraasin (AChE) toimintaa, koska tämän entsyymin toiminna estämisen tiedetään olevan hyödyksi Alzheimerin taudin hoidossa. Uute kykeni estämään AChE:n toimintaa, minkä vuoksi uutteen sisältämiä komponentteja päätettiin tutkia terkemmin. Uute jaettiin erilaisiin fraktioihin käyttäen HPLC-menetelmää, minkä jälkeen testattiin jokaisen fraktion kykyä inhiboida AchE. Suurin osa fraktioista kykeni inhiboimaan AChE:n toimintaa selkeästi tehokkaammin, kuin raakauute. Kaikista tehokkainta fraktiota analysoitiin tarkemmin sen aktiivisten yhdisteiden tunnistamiseksi, minkä seurauksena sen sisältämät yhdisteet tunnistettiin cis ja trans-rosmariinihapoiksi. Tässä tutkimuksessa tunnistettujen yhdisteiden hyödyllisyyttä Alzheimerin taudin hoidossa tulisi seuraavaksi tutkia erilaisissa in vivo-malleissa. Lisäksi jäljellä olevien fraktioiden kemiallinen koostumus tulisi selvittää sekä antioksidanttiaktiivisuuden ja AChE:n toiminnan inhiboinnin välistä mahdollista yhteyttä tulisi tutkia tarkemmin. Tämä tutkimus osoittaa tuoksuampiasyrtin (D. moldavica) sekä sitruunamelissan (M. officinalis) sisältävän monenlaisia aktiivisia antioksidantteja. Lisäksi sitruunamelissan sisältämät yhdisteet kykenivät estämään asetyylikoliiniesteraasin (AchE) toimintaa. Nämä tulokset tukevat osaltaan väitöskirjan osana olevan kooste-artikkelin johtopäätöksiä, joiden mukaan etnofarmakologinen kasvitutkimus voi osoittautua erittäin hyödylliseksi kehitettäessä uutta lääkehoitoa Alzheimerin tautiin. Lisäksi tässä väitöskirjassa kuvattu tutkimus osoittaakin, että perinteisesti lääkekasvina käytettyä sitruunamelissaa voidaan mahdollisesti hyödyntää uusien Alzheimerin taudin hoitoon käytettävien lääkkeiden kehityksessä.
Resumo:
Colorectal cancer (CRC) is a major health concern and demands long-term efforts in developing strategies for screening and prevention. CRC has become a preventable disease as a consequence of a better understanding of colorectal carcinogenesis. However, current therapy is unsatisfactory and necessitates the exploration of other approaches for the prevention and treatment of cancer. Plant based products have been recognized as preventive with regard to the development of colon cancer. Therefore, the potential chemopreventive use and mechanism of action of Lebanese natural product were evaluated. Towards this aim the antitumor activity of Onopordum cynarocephalum and Centaurea ainetensis has been studied using in vitro and in vivo models. In vitro, both crude extracts were non cytotoxic to normal intestinal cells and inhibited the proliferation of colon cancer cells in a dose-dependent manner. In vivo, both crude extracts reduced the number of tumors by an average of 65% at weeks 20 (adenomas stage) and 30 (adenocarcinomas stage). The activity of the C. ainetensis extract was attributed to Salograviolide A, a guaianolide-type sesquiterpene lactone, which was isolated and identified through bio-guided fractionation. The mechanism of action of thymoquinone (TQ), the active component of Nigella sativa, was established in colon cancer cells using in vitro models. By the use of N-acetyl cysteine, a radical scavenger, the direct involvement of reactive oxygen species in TQ-induced apoptotic cells was established. The analytical detection of TQ from spiked serum and its protein binding were evaluated. The average recovery of TQ from spiked serum subjected to several extraction procedures was 2.5% proving the inability of conventional methods to analyze TQ from serum. This has been explained by the extensive binding (>98%) of TQ to serum and major serum components such as bovine serum albumin (BSA) and alpha-1-acid glycoprotein (AGP). Using mass spectrometry analysis, TQ was confirmed to bind covalently to the free cysteine in position 34 and 147 of the amino acid sequence of BSA and AGP, respectively. The results of this work put at the disposal for future development new plants with anti-cancer activities and enhance the understanding of the pharmaceutical properties of TQ, a prerequisite for its future clinical development.
Resumo:
Failures in industrial organizations dealing with hazardous technologies can have widespread consequences for the safety of the workers and the general population. Psychology can have a major role in contributing to the safe and reliable operation of these technologies. Most current models of safety management in complex sociotechnical systems such as nuclear power plant maintenance are either non-contextual or based on an overly-rational image of an organization. Thus, they fail to grasp either the actual requirements of the work or the socially-constructed nature of the work in question. The general aim of the present study is to develop and test a methodology for contextual assessment of organizational culture in complex sociotechnical systems. This is done by demonstrating the findings that the application of the emerging methodology produces in the domain of maintenance of a nuclear power plant (NPP). The concepts of organizational culture and organizational core task (OCT) are operationalized and tested in the case studies. We argue that when the complexity of the work, technology and social environment is increased, the significance of the most implicit features of organizational culture as a means of coordinating the work and achieving safety and effectiveness of the activities also increases. For this reason a cultural perspective could provide additional insight into the problem of safety management. The present study aims to determine; (1) the elements of the organizational culture in complex sociotechnical systems; (2) the demands the maintenance task sets for the organizational culture; (3) how the current organizational culture at the case organizations supports the perception and fulfilment of the demands of the maintenance work; (4) the similarities and differences between the maintenance cultures at the case organizations, and (5) the necessary assessment of the organizational culture in complex sociotechnical systems. Three in-depth case studies were carried out at the maintenance units of three Nordic NPPs. The case studies employed an iterative and multimethod research strategy. The following methods were used: interviews, CULTURE-survey, seminars, document analysis and group work. Both cultural analysis and task modelling were carried out. The results indicate that organizational culture in complex sociotechnical systems can be characterised according to three qualitatively different elements: structure, internal integration and conceptions. All three of these elements of culture as well as their interrelations have to be considered in organizational assessments or important aspects of the organizational dynamics will be overlooked. On the basis of OCT modelling, the maintenance core task was defined as balancing between three critical demands: anticipating the condition of the plant and conducting preventive maintenance accordingly, reacting to unexpected technical faults and monitoring and reflecting on the effects of maintenance actions and the condition of the plant. The results indicate that safety was highly valued at all three plants, and in that sense they all had strong safety cultures. In other respects the cultural features were quite different, and thus the culturally-accepted means of maintaining high safety also differed. The handicraft nature of maintenance work was emphasised as a source of identity at the NPPs. Overall, the importance of safety was taken for granted, but the cultural norms concerning the appropriate means to guarantee it were little reflected. A sense of control, personal responsibility and organizational changes emerged as challenging issues at all the plants. The study shows that in complex sociotechnical systems it is both necessary and possible to analyse the safety and effectiveness of the organizational culture. Safety in complex sociotechnical systems cannot be understood or managed without understanding the demands of the organizational core task and managing the dynamics between the three elements of the organizational culture.
Resumo:
The androgen receptor (AR) mediates the effects of the male sex-steroid hormones (androgens), testosterone and 5?-dihydrotestosterone. Androgens are critical in the development and maintenance of male sexual characteristics. AR is a member of the steroid receptor ligand-inducible transcription factor family. The steroid receptor family is a subgroup of the nuclear receptor superfamily that also includes receptors for the active forms of vitamin A, vitamin D3, and thyroid hormones. Like all nuclear receptors, AR has a conserved modular structure consisting of a non-conserved amino-terminal domain (NTD), containing the intrinsic activation function 1, a highly conserved DNA-binding domain, and a conserved ligand-binding domain (LBD) that harbors the activation function 2. Each of these domains plays an important role in receptor function and signaling, either via intra- and inter-receptor interactions, interactions with specific DNA sequences, termed hormone response elements, or via functional interactions with domain-specific proteins, termed coregulators (coactivators and corepressors). Upon binding androgens, AR acquires a new conformational state, translocates to the nucleus, binds to androgen response elements, homodimerizes and recruits sequence-specific coregulatory factors and the basal transcription machinery. This set of events is required to activate gene transcription (expression). Gene transcription is a strictly modulated process that governs cell growth, cell homeostasis, cell function and cell death. Disruptions of AR transcriptional activity caused by receptor mutations and/or altered coregulator interactions are linked to a wide spectrum of androgen insensitivity syndromes, and to the pathogenesis of prostate cancer (CaP). The treatment of CaP usually involves androgen depletion therapy (ADT). ADT achieves significant clinical responses during the early stages of the disease. However, under the selective pressure of androgen withdrawal, androgen-dependent CaP can progress to an androgen-independent CaP. Androgen-independent CaP is invariably a more aggressive and untreatable form of the disease. Advancing our understanding of the molecular mechanisms behind the switch in androgen-dependency would improve our success of treating CaP and other AR related illnesses. This study evaluates how clinically identified AR mutations affect the receptor s transcriptional activity. We reveal that a potential molecular abnormality in androgen insensitivity syndrome and CaP patients is caused by disruptions of the important intra-receptor NTD/LBD interaction. We demonstrate that the same AR LBD mutations can also disrupt the recruitment of the p160 coactivator protein GRIP1. Our investigations reveal that 30% of patients with advanced, untreated local CaP have somatic mutations that may lead to increases in AR activity. We report that somatic mutations that activate AR may lead to early relapse in ADT. Our results demonstrate that the types of ADT a CaP patient receives may cause a clustering of mutations to a particular region of the receptor. Furthermore, the mutations that arise before and during ADT do not always result in a receptor that is more active, indicating that coregulator interactions play a pivotal role in the progression of androgen-independent CaP. To improve CaP therapy, it is necessary to identify critical coregulators of AR. We screened a HeLa cell cDNA library and identified small carboxyl-terminal domain phosphatase 2 (SCP2). SCP2 is a protein phosphatase that directly interacts with the AR NTD and represses AR activity. We demonstrated that reducing the endogenous cellular levels of SCP2 causes more AR to load on to the prostate specific antigen (PSA) gene promoter and enhancer regions. Additionally, under the same conditions, more RNA polymerase II was recruited to the PSA promoter region and overall there was an increase in androgen-dependent transcription of the PSA gene, revealing that SCP2 could play a role in the pathogenesis of CaP.