4 resultados para Lac operons
em Helda - Digital Repository of University of Helsinki
Resumo:
The type A lantibiotic nisin produced by several Lactococcus lactis strains, and one Streptococcus uberis strainis a small antimicrobial peptide that inhibits the growth of a wide range of gram-positive bacteria, such as Bacillus, Clostridium, Listeria and Staphylococcus species. It is nontoxic to humans and used as a food preservative (E234) in more than 50 countries including the EU, the USA, and China. National legislations concerning maximum addition levels of nisin in different foods vary greatly. Therefore, there is a demand for non-laborious and sensitive methods to identify and quantify nisin reliably from different food matrices. The horizontal inhibition assay, based on the inhibitory effect of nisin to Micrococcus luteus is the base for most quantification methods developed so far. However, the sensitivity and accuracy of the agar diffusion method is affected by several parameters. Immunological tests have also been described. Taken into account the sensitivity of immunological methods to interfering substances within sample matrices, and possible cross-reactivities with lantibiotics structurally close to nisin, their usefulness for nisin detection from food samples remains limited. The proteins responsible for nisin biosynthesis, and producer self-immunity are encoded by genes arranged into two inducible operons, nisA/Z/QBTCIPRK and nisFEG, which also contain internal, constitutive promoters PnisI and PnisR. The transmembrane histidine kinase NisK and the response regulator NisR form a two-component signal transduction system, in which NisK autophosphorylates after exposure to extra cellular nisin, and subsequently transfers the phosphate to NisR. The phosphorylated NisR then relays the signal downstream by binding to two regulated promoters in the nisin gene cluster, i.e the nisA/Z/Qand the nisF promoters, thus activating transcription of the structural gene nisA/Z/Q and the downstream genes nisBTCIPRK from the nisA/Z/Q promoter, and the genes nisFEG from the nisF promoter. In this work two novel and highly sensitive nisin bioassays were developed. Both of these quantification methods were based on NisRK mediated, nisin induced Green Fluorescent Protein (GFP) fluorescence. The suitabilities of these assays for quantifica¬tion of nisin from food samples were evaluated in several food matrices. These bioassays had nisin sensitivities in the nanogram or picogram levels. In addition, shelf life of nisin in cooked sausages and retainment of the induction activity of nisin in intestinal chyme (intestinal content) was assessed.
Resumo:
Dimeric phenolic compounds lignans and dilignols form in the so-called oxidative coupling reaction of phenols. Enzymes such as peroxidases and lac-cases catalyze the reaction using hydrogen peroxide or oxygen respectively as oxidant generating phenoxy radicals which couple together according to certain rules. In this thesis, the effects of the structures of starting materials mono-lignols and the effects of reaction conditions such as pH and solvent system on this coupling mechanism and on its regio- and stereoselectivity have been studied. After the primary coupling of two phenoxy radicals a very reactive quinone me-thide intermediate is formed. This intermediate reacts quickly with a suitable nucleophile which can be, for example, an intramolecular hydroxyl group or another nucleophile such as water, methanol, or a phenolic compound in the reaction system. This reaction is catalyzed by acids. After the nucleophilic addi-tion to the quinone methide, other hydrolytic reactions, rearrangements, and elimination reactions occur leading finally to stable dimeric structures called lignans or dilignols. Similar reactions occur also in the so-called lignification process when monolignol (or dilignol) reacts with the growing lignin polymer. New kinds of structures have been observed in this thesis. The dimeric com-pounds with so-called spirodienone structure have been observed to form both in the dehydrodimerization of methyl sinapate and in the beta-1-type cross-coupling reaction of two different monolignols. This beta-1-type dilignol with a spirodienone structure was the first synthetized and published dilignol model compound, and at present, it has been observed to exist as a fundamental construction unit in lignins. The enantioselectivity of the oxidative coupling reaction was also studied for obtaining enantiopure lignans and dilignols. A rather good enantioselectivity was obtained in the oxidative coupling reaction of two monolignols with chiral auxiliary substituents using peroxidase/H2O2 as an oxidation system. This observation was published as one of the first enantioselective oxidative coupling reaction of phenols. Pure enantiomers of lignans were also obtained by using chiral cryogenic chromatography as a chiral resolution technique. This technique was shown to be an alternative route to prepare enantiopure lignans or lignin model compounds in a preparative scale.
Resumo:
As the resistance of bacteria to conventional antibiotics has become an increasing problem, new antimicrobial drugs are urgently needed. One possible source of new antibacterial agents is a group of cationic antimicrobial peptides (CAMPs) produced by practically all living organisms. These peptides are typically small, amphipathic and positively charged and contain well defined a-helical or b-sheet secondary structures. The main antibacterial action mechanism of CAMPs is considered to be disruption of the cell membrane, but other targets of CAMPs also exist. Some bacterial species have evolved defence mechanisms against the harmful effects of CAMPs. One of the most effective defence mechanisms is reduction of the net negative charge of bacterial cell surfaces. Global analysis of gene expression of two Gram-positive bacteria, Bacillus subtilis and Staphylococcus aureus, was used to further study the stress responses induced by different types of CAMPs. B. subtilis cells were treated with sublethal concentrations of a-helical peptide LL-37, b-sheet peptide protegrin 1 or synthetic analogue poly-L-lysine, and the changes in gene expression were studied using DNA macroarrays. In the case of S. aureus, three different a-helical peptides were selected for the transcriptome analyses: temporin L, ovispirin-1 and dermaseptin K4-S4(1-16). Transcriptional changes caused by peptide stress were examined using oligo DNA microarrays. The transcriptome analysis revealed two main cell signalling mechanisms mediating CAMP stress responses in Gram-positive bacteria: extracytoplasmic function (ECF)sigma factors and two-component systems (TCSs). In B. subtilis, ECF sigma factors sigW and sigM as well as TCS LiaRS responded to the cell membrane disruption caused by CAMPs. In S. aureus, CAMPs caused a similar stress response to antibiotics interfering in cell wall synthesis, and TCS VraSR was strongly activated. All of these transcriptional regulators are known to respond to several compounds other than CAMPs interfering with cell envelope integrity, suggesting that they sense cell envelope stress in general. Among the most strongly induced genes were yxdLM (in B. subtilis) and vraDE (in S. aureus) encoding homologous ABC transporters. Transcription of yxdLM and vraDE operons is controlled by TCSs YxdJK and ApsRS, respectively. These TCSs seemed to be responsible for the direct recognition of CAMPs. The yxdLM operon was specifically induced by LL-37, but its role in CAMP resistance remained unclear. VraDE was proven to be a bacitracin transporter. We also showed that the net positive charge of the cell wall affects the signalrecognition of different TCSs responding to cell envelope stress. Inactivation of the Dlt system responsible for the D-alanylation of teichoic acids had a strong and differential effect on the activity of the studied TCSs, depending on their functional role in cells and the stimuli they sense.
Resumo:
Background: Helicobacter pylori infection is usually acquired in early childhood and is rarely resolved spontaneously. Eradication therapy is currently recommended virtually to all patients. While the first and second therapies are prescribed without knowing the antibiotic resistance of the bacteria, it is important to know the primary resistance in the population. Aim: This study evaluates the primary resistance of H. pylori among patients in primary health care throughout Finland, the efficacy of three eradication regimens, the symptomatic response to successful therapy, and the effect of smoking on gastric histology and humoral response in H. pylori-positive patients. Patients and methods: A total of 23 endoscopy referral centres located throughout Finland recruited 342 adult patients with positive rapid urease test results, who were referred to upper gastrointestinal endoscopy from primary health care. Gastric histology, H. pylori resistance and H. pylori serology were evaluated. The patients were randomized to receive a seven-day regimen, comprising 1) lansoprazole 30 mg b.d., amoxicillin 1 g b.d. and metronidazole 400 mg t.d. (LAM), 2) lansoprazole 30 mg b.d., amoxicillin 1 g b.d. and clarithromycin 500 mg b.d. (LAC) or 3) ranitidine bismuth citrate 400 mg b.d., metronidazole 400 mg t.d. and tetracycline 500 mg q.d. (RMT). The eradication results were assessed, using the 13C-urea breath test 4 weeks after therapy. The patients completed a symptom questionnaire before and a year after the therapy. Results: Primary resistance of H. pylori to metronidazole was 48% among women and 25% among men. In women, metronidazole resistance correlated with previous use of antibiotics for gynaecologic infections and alcohol consumption. Resistance rate to clarithromycin was only 2%. Intention-to-treat cure rates of LAM, LAC, and RMT were 78%, 91% and 81%. While in metronidazole-sensitive cases the cure rates with LAM, LAC and RMT were similar, in metronidazole resistance LAM and RMT were inferior to LAC (53%, 67% and 84%). Previous antibiotic therapies reduced the efficacy of LAC, to the level of RMT. Dyspeptic symptoms in the Gastrointestinal Symptoms Rating Scale (GSRS) were decreased by 30.5%. In logistic regression analysis, duodenal ulcer, gastric antral neutrophilic inflammation and age from 50 to 59 years independently predicted greater decrease in dyspeptic symptoms. In the gastric body, smokers had milder inflammation and less atrophy and in the antrum denser H. pylori load. Smokers also had lower IgG antibody titres against H. pylori and a smaller proportional decrease in antibodies after successful eradication. Smoking tripled the risk of duodenal ulcers. Conclusions: in Finland H. pylori resistance to clarithromycin is low, but metronidazole resistance among women is high making metronidazole-based therapies unfavourable. Thus, LAC is the best choice for first-line eradication therapy. The effect of eradication on dyspeptic symptoms was only modest. Smoking slows the progression of atrophy in the gastric body.