27 resultados para In-process
em Helda - Digital Repository of University of Helsinki
Resumo:
Fluid bed granulation is a key pharmaceutical process which improves many of the powder properties for tablet compression. Dry mixing, wetting and drying phases are included in the fluid bed granulation process. Granules of high quality can be obtained by understanding and controlling the critical process parameters by timely measurements. Physical process measurements and particle size data of a fluid bed granulator that are analysed in an integrated manner are included in process analytical technologies (PAT). Recent regulatory guidelines strongly encourage the pharmaceutical industry to apply scientific and risk management approaches to the development of a product and its manufacturing process. The aim of this study was to utilise PAT tools to increase the process understanding of fluid bed granulation and drying. Inlet air humidity levels and granulation liquid feed affect powder moisture during fluid bed granulation. Moisture influences on many process, granule and tablet qualities. The approach in this thesis was to identify sources of variation that are mainly related to moisture. The aim was to determine correlations and relationships, and utilise the PAT and design space concepts for the fluid bed granulation and drying. Monitoring the material behaviour in a fluidised bed has traditionally relied on the observational ability and experience of an operator. There has been a lack of good criteria for characterising material behaviour during spraying and drying phases, even though the entire performance of a process and end product quality are dependent on it. The granules were produced in an instrumented bench-scale Glatt WSG5 fluid bed granulator. The effect of inlet air humidity and granulation liquid feed on the temperature measurements at different locations of a fluid bed granulator system were determined. This revealed dynamic changes in the measurements and enabled finding the most optimal sites for process control. The moisture originating from the granulation liquid and inlet air affected the temperature of the mass and pressure difference over granules. Moreover, the effects of inlet air humidity and granulation liquid feed rate on granule size were evaluated and compensatory techniques used to optimize particle size. Various end-point indication techniques of drying were compared. The ∆T method, which is based on thermodynamic principles, eliminated the effects of humidity variations and resulted in the most precise estimation of the drying end-point. The influence of fluidisation behaviour on drying end-point detection was determined. The feasibility of the ∆T method and thus the similarities of end-point moisture contents were found to be dependent on the variation in fluidisation between manufacturing batches. A novel parameter that describes behaviour of material in a fluid bed was developed. Flow rate of the process air and turbine fan speed were used to calculate this parameter and it was compared to the fluidisation behaviour and the particle size results. The design space process trajectories for smooth fluidisation based on the fluidisation parameters were determined. With this design space it is possible to avoid excessive fluidisation and improper fluidisation and bed collapse. Furthermore, various process phenomena and failure modes were observed with the in-line particle size analyser. Both rapid increase and a decrease in granule size could be monitored in a timely manner. The fluidisation parameter and the pressure difference over filters were also discovered to express particle size when the granules had been formed. The various physical parameters evaluated in this thesis give valuable information of fluid bed process performance and increase the process understanding.
Resumo:
Megasphaera cerevisiae, Pectinatus cerevisiiphilus, Pectinatus frisingensis, Selenomonas lacticifex, Zymophilus paucivorans and Zymophilus raffinosivorans are strictly anaerobic Gram-stain-negative bacteria that are able to spoil beer by producing off-flavours and turbidity. They have only been isolated from the beer production chain. The species are phylogenetically affiliated to the Sporomusa sub-branch in the class "Clostridia". Routine cultivation methods for detection of strictly anaerobic bacteria in breweries are time-consuming and do not allow species identification. The main aim of this study was to utilise DNA-based techniques in order to improve detection and identification of the Sporomusa sub-branch beer-spoilage bacteria and to increase understanding of their biodiversity, evolution and natural sources. Practical PCR-based assays were developed for monitoring of M. cerevisiae, Pectinatus species and the group of Sporomusa sub-branch beer spoilers throughout the beer production process. The developed assays reliably differentiated the target bacteria from other brewery-related microbes. The contaminant detection in process samples (10 1,000 cfu/ml) could be accomplished in 2 8 h. Low levels of viable cells in finished beer (≤10 cfu/100 ml) were usually detected after 1 3 d culture enrichment. Time saving compared to cultivation methods was up to 6 d. Based on a polyphasic approach, this study revealed the existence of three new anaerobic spoilage species in the beer production chain, i.e. Megasphaera paucivorans, Megasphaera sueciensis and Pectinatus haikarae. The description of these species enabled establishment of phenotypic and DNA-based methods for their detection and identification. The 16S rRNA gene based phylogenetic analysis of the Sporomusa sub-branch showed that the genus Selenomonas originates from several ancestors and will require reclassification. Moreover, Z. paucivorans and Z. raffinosivorans were found to be in fact members of the genus Propionispira. This relationship implies that they were carried to breweries along with plant material. The brewery-related Megasphaera species formed a distinct sub-group that did not include any sequences from other sources, suggesting that M. cerevisiae, M. paucivorans and M. sueciensis may be uniquely adapted to the brewery ecosystem. M. cerevisiae was also shown to exhibit remarkable resistance against many brewery-related stress conditions. This may partly explain why it is a brewery contaminant. This study showed that DNA-based techniques provide useful tools for obtaining more rapid and specific information about the presence and identity of the strictly anaerobic spoilage bacteria in the beer production chain than is possible using cultivation methods. This should ensure financial benefits to the industry and better product quality to customers. In addition, DNA-based analyses provided new insight into the biodiversity as well as natural sources and relations of the Sporomusa sub-branch bacteria. The data can be exploited for taxonomic classification of these bacteria and for surveillance and control of contaminations.
Resumo:
This thesis studies the informational efficiency of the European Union emission allowance (EUA) market. In an efficient market, the market price is unpredictable and profits above average are impossible in the long run. The main research problem is does the EUA price follow a random walk. The method is an econometric analysis of the price series, which includes an autocorrelation coefficient test and a variance ratio test. The results reveal that the price series is autocorrelated and therefore a nonrandom walk. In order to find out the extent of predictability, the price series is modelled with an autoregressive model. The conclusion is that the EUA price is autocorrelated only to a small degree and that the predictability cannot be used to make extra profits. The EUA market is therefore considered informationally efficient, although the price series does not fulfill the requirements of a random walk. A market review supports the conclusion, but it is clear that the maturing of the market is still in process.
Resumo:
This thesis reports investigations into the paper wetting process and its effects on the surface roughness and the out-of-plane (ZD) stiffness of machine-made paper. The aim of this work was to test the feasibility of employing air-borne ultrasound methods to determine surface roughness (by reflection) and ZD stiffness (by through transmission) of paper during penetration of distilled water, isopropanol and their mixtures. Air-borne ultrasound provides a non-contacting way to evaluate sample structure and mechanics during the liquid penetration event. Contrary to liquid immersion techniques, an air-borne measurement allows studying partial wetting of paper. In addition, two optical methods were developed to reveal the liquid location in paper during wetting. The laser light through transmission method was developed to monitor the liquid location in partially wetted paper. The white light reflection method was primarily used to monitor the penetration of the liquid front in the thickness direction. In the latter experiment the paper was fully wetted. The main results of the thesis were: 1) Liquid penetration induced surface roughening was quantified by monitoring the ultrasound reflection from the paper surface. 2) Liquid penetration induced stiffness alteration in the ZD of paper could be followed by measuring the change in the ultrasound ZD resonance in paper. 3) Through transmitted light revealed the liquid location in the partially wetted paper. 4) Liquid movement in the ZD of the paper could be observed by light reflection. The results imply that the presented ultrasonic means can without contact measure the alteration of paper roughness and stiffness during liquid transport. These methods can help avoiding over engineering the paper which reduces raw material and energy consumption in paper manufacturing. The presented optical means can estimate paper specific wetting properties, such as liquid penetration speed, transport mechanisms and liquid location within the paper structure. In process monitoring, these methods allow process tuning and manufacturing of paper with engineered liquid transport characteristics. With such knowledge the paper behaviour during printing can be predicted. These findings provide new methods for paper printing, surface sizing, and paper coating research.
Resumo:
Space in musical semiosis is a study of musical meaning, spatiality and composition. Earlier studies on musical composition have not adequately treated the problems of musical signification. Here, composition is considered an epitomic process of musical signification. Hence the core problems of composition theory are core problems of musical semiotics. The study employs a framework of naturalist pragmatism, based on C. S. Peirce’s philosophy. It operates on concepts such as subject, experience, mind and inquiry, and incorporates relevant ideas of Aristotle, Peirce and John Dewey into a synthetic view of esthetic, practic, and semiotic for the benefit of grasping musical signification process as a case of semiosis in general. Based on expert accounts, music is depicted as real, communicative, representational, useful, embodied and non-arbitrary. These describe how music and the musical composition process are mental processes. Peirce’s theories are combined with current morphological theories of cognition into a view of mind, in which space is central. This requires an analysis of space, and the acceptance of a relativist understanding of spatiality. This approach to signification suggests that mental processes are spatially embodied, by virtue of hard facts of the world, literal representations of objects, as well as primary and complex metaphors each sharing identities of spatial structures. Consequently, music and the musical composition process are spatially embodied. Composing music appears as a process of constructing metaphors—as a praxis of shaping and reshaping features of sound, representable from simple quality dimensions to complex domains. In principle, any conceptual space, metaphorical or literal, may set off and steer elaboration, depending on the practical bearings on the habits of feeling, thinking and action, induced in musical communication. In this sense, it is evident that music helps us to reorganize our habits of feeling, thinking, and action. These habits, in turn, constitute our existence. The combination of Peirce and morphological approaches to cognition serves well for understanding musical and general signification. It appears both possible and worthwhile to address a variety of issues central to musicological inquiry in the framework of naturalist pragmatism. The study may also contribute to the development of Peircean semiotics.
Resumo:
The purpose of this study is to find a framework for a holistic approach to, and form a conceptual toolbox for, investigating changes in signs and in their interpretation. Charles S. Peirce s theory of signs in a communicative perspective is taken as a basis for the framework. The concern directing the study is the problem of a missing framework in analysing signs of visual artefacts from a holistic perspective as well as that of the missing conceptual tools. To discover the possibility of such a holistic approach to semiosic processes and to form a conceptual toolbox the following issues are discussed: i) how the many Objects with two aspects involved in Peirce s definition of sign-action, promote multiple semiosis arising from the same sign by the same Interpretant depending on the domination of the Objects; ii) in which way can the relation of the individual and society or group be made more apparent in the construction of the self since this construction is intertwined with the process of meaning-creation and interpretation; iii) how to account for the fundamental role of emotions in semiosis, and the relation of emotions with the often neglected topic of embodiment; iv) how to take into account the dynamic, mediating and processual nature of sign-action in analysing and understanding the changes in signs and in the interpretation of signs. An interdisciplinary approach is chosen for this dissertation. Concepts that developed within social psychology, developmental psychology, neurosciences and semiotics, are discussed. The common aspect of the approaches is that they in one way or another concentrate on mediation provided by signs in explaining human activity and cognition. The holistic approach and conceptual toolbox found are employed in a case study. This consists of an analysis of beer brands including a comparison of brands from two different cultures. It becomes clear that different theories and approaches have mutual affinities and do complement each other. In addition, the affinities in different disciplines somewhat provide credence to the various views. From the combined approach described, it becomes apparent that by the semiosic process, the emerging semiotic self intertwined with the Umwelt, including emotions, can be described. Seeing the interpretation and meaning-making through semiosis allows for the analysis of groups, taking into account the embodied and emotional component. It is concluded that emotions have a crucial role in all human activity, including so-called reflective thinking, and that emotions and embodiment should be consciously taken into account in analysing signs, the interpretation, and in changes of signs and interpretations from both the social and individual level. The analysis of the beer labels expresses well the intertwined nature of the relationship between signs, individual consumers and society. Many direct influences from society on the label design are found, and also some indirect attitude changes that become apparent from magazines, company reports, etc. In addition, the analysis brings up the issues of the unifying tendency of the visual artefacts of different cultures, but also demonstrates that the visual artefacts are able to hold the local signs and meanings, and sometimes are able to represent the local meanings although the signs have changed in the unifying process.
Resumo:
The dissertation examines Roman provincial administration and the phenomenon of territorial reorganisations of provinces during the Imperial period with special emphasis on the provinces of Arabia and Palaestina during the Later Roman period, i.e., from Diocletian (r. 284 305) to the accession of Phocas (602), in the light of imperial decision-making. Provinces were the basic unit of Roman rule, for centuries the only level of administration that existed between the emperor and the cities of the Empire. The significance of the territorial reorganisations that the provinces were subjected to during the Imperial period is thus of special interest. The approach to the phenomenon is threefold: firstly, attention is paid to the nature and constraints of the Roman system of provincial administration. Secondly, the phenomenon of territorial reorganisations is analysed on the macro-scale, and thirdly, a case study concerning the reorganisations of the provinces of Arabia and Palaestina is conducted. The study of the mechanisms of decision-making provides a foundation through which the collected data of all known major territorial reorganisations is interpreted. The data concerning reorganisations is also subjected to qualitative comparative analysis that provides a new perspective to the data in the form of statistical analysis that is sensitive to the complexities of individual cases. This analysis of imperial decision-making is based on a timeframe stretching from Augustus (r. 30 BC AD 14) to the accession of Phocas (602). The study identifies five distinct phases in the use of territorial reorganisations of the provinces. From Diocletian s reign there is a clear normative change that made territorial reorganisations a regular tool of administration for the decision-making elite for addressing a wide variety of qualitatively different concerns. From the beginning of the fifth century the use of territorial reorganisations rapidly diminishes. The two primary reasons for the decline in the use of reorganisations were the solidification of ecclesiastical power and interests connected to the extent of provinces, and the decline of the dioceses. The case study of Palaestina and Arabia identifies seven different territorial reorganisations from Diocletian to Phocas. Their existence not only testifies to wider imperial policies, but also shows sensitivity to local conditions and corresponds with the general picture of provincial reorganisations. The territorial reorganisations of the provinces reflect the proactive control of the Roman decision-making elite. The importance of reorganisations should be recognised more clearly as part of the normal imperial administration of the provinces and especially reflecting the functioning of dioceses.
Resumo:
Composting refers to aerobic degradation of organic material and is one of the main waste treatment methods used in Finland for treating separated organic waste. The composting process allows converting organic waste to a humus-like end product which can be used to increase the organic matter in agricultural soils, in gardening, or in landscaping. Microbes play a key role as degraders during the composting-process, and the microbiology of composting has been studied for decades, but there are still open questions regarding the microbiota in industrial composting processes. It is known that with the traditional, culturing-based methods only a small fraction, below 1%, of the species in a sample is normally detected. In recent years an immense diversity of bacteria, fungi and archaea has been found to occupy many different environments. Therefore the methods of characterising microbes constantly need to be developed further. In this thesis the presence of fungi and bacteria in full-scale and pilot-scale composting processes was characterised with cloning and sequencing. Several clone libraries were constructed and altogether nearly 6000 clones were sequenced. The microbial communities detected in this study were found to differ from the compost microbes observed in previous research with cultivation based methods or with molecular methods from processes of smaller scale, although there were similarities as well. The bacterial diversity was high. Based on the non-parametric coverage estimations, the number of bacterial operational taxonomic units (OTU) in certain stages of composting was over 500. Sequences similar to Lactobacillus and Acetobacteria were frequently detected in the early stages of drum composting. In tunnel stages of composting the bacterial community comprised of Bacillus, Thermoactinomyces, Actinobacteria and Lactobacillus. The fungal diversity was found to be high and phylotypes similar to yeasts were abundantly found in the full-scale drum and tunnel processes. In addition to phylotypes similar to Candida, Pichia and Geotrichum moulds from genus Thermomyces and Penicillium were observed in tunnel stages of composting. Zygomycetes were detected in the pilot-scale composting processes and in the compost piles. In some of the samples there were a few abundant phylotypes present in the clone libraries that masked the rare ones. The rare phylotypes were of interest and a method for collecting them from clone libraries for sequencing was developed. With negative selection of the abundant phylotyps the rare ones were picked from the clone libraries. Thus 41% of the clones in the studied clone libraries were sequenced. Since microbes play a central role in composting and in many other biotechnological processes, rapid methods for characterization of microbial diversity would be of value, both scientifically and commercially. Current methods, however, lack sensitivity and specificity and are therefore under development. Microarrays have been used in microbial ecology for a decade to study the presence or absence of certain microbes of interest in a multiplex manner. The sequence database collected in this thesis was used as basis for probe design and microarray development. The enzyme assisted detection method, ligation-detection-reaction (LDR) based microarray, was adapted for species-level detection of microbes characteristic of each stage of the composting process. With the use of a specially designed control probe it was established that a species specific probe can detect target DNA representing as little as 0.04% of total DNA in a sample. The developed microarray can be used to monitor composting processes or the hygienisation of the compost end product. A large compost microbe sequence dataset was collected and analysed in this thesis. The results provide valuable information on microbial community composition during industrial scale composting processes. The microarray method was developed based on the sequence database collected in this study. The method can be utilised in following the fate of interesting microbes during composting process in an extremely sensitive and specific manner. The platform for the microarray is universal and the method can easily be adapted for studying microbes from environments other than compost.
Resumo:
Cytomegalovirus (CMV) is a major cause of morbidity, costs and even mortality in organ transplant recipients. CMV may also enhance the development of chronic allograft nephropathy (CAN), which is the most important cause of graft loss after kidney transplantation. The evidence for the role of CMV in chronic allograft nephropathy is somewhat limited, and controversial results have also been reported. The aim of this study was to investigate the role of CMV in the pathogenesis of CAN. Material for the purpose of this study was available from altogether 70 kidney transplant recipients who received a kidney transplant between the years 1992-2000. CMV infection was diagnosed with pp65 antigenemia test or by viral culture from blood, urine, or both. CMV proteins were demonstrated in the kidney allograft biopsies by immunohistochemisrty and CMV-DNA by in situ hybridization. Cytokines, adhesion molecules, and growth factors were demonstrated from allograft biopsies by immunohistochemistry, and from urinary samples by ELISA-methods. CMV proteins were detectable in the 6-month protocol biopsies from 18/41 recipients with evidence of CMV infection. In the histopathological analysis of the 6-month protocol biopsies, presence of CMV in the allograft together with a previous history of acute rejection episodes was associated with increased arteriosclerotic changes in small arterioles. In urinary samples collected during CMV infection, excretion of TGF-β was significantly increased. In recipients with increased urinary excretion of TGF-β, increased interstitial fibrosis was recorded in the 6- month protocol biopsies. In biopsies taken after an active CMV infection, CMV persisted in the kidney allograft in 17/48 recipients, as CMV DNA or antigens were detected in the biopsies more than 2 months after the last positive finding in blood or urine. This persistence was associated with increased expression of TGF-β, PDGF, and ICAM-1 and with increased vascular changes in the allografts. Graft survival and graft function one and two years after transplantation were reduced in recipients with persistent intragraft CMV. Persistent intragraft CMV infection was also a risk factor for reduced graft survival in Cox regression analysis, and an independent risk factor for poor graft function one and two years after transplantation in logistic regression analysis. In conclusion, these results show that persistent intragraft CMV infection is detrimental to kidney allografts, causing increased expression of growth factors and increased vascular changes, leading to reduced graft function and survival. Effective prevention, diagnosis and treatment of CMV infections may a major factor in improving the long term survival of kidney allograft.
Resumo:
A model of the information and material activities that comprise the overall construction process is presented, using the SADT activity modelling methodology. The basic model is further refined into a number of generic information handling activities such as creation of new information, information search and retrieval, information distribution and person-to-person communication. The viewpoint could be described as information logistics. This model is then combined with a more traditional building process model, consisting of phases such as design and construction. The resulting two-dimensional matrix can be used for positioning different types of generic IT-tools or construction specific applications. The model can thus provide a starting point for a discussion of the application of information and communication technology in construction and for measurements of the impacts of IT on the overall process and its related costs.
Resumo:
There has been a demand for uniform CAD standards in the construction industry ever since the large-scale introduction of computer aided design systems in the late 1980s. While some standards have been widely adopted without much formal effort, other standards have failed to gain support even though considerable resources have been allocated for the purpose. Establishing a standard concerning building information modeling has been one particularly active area of industry development and scientific interest within recent years. In this paper, four different standards are discussed as cases: the IGES and DXF/DWG standards for representing the graphics in 2D drawings, the ISO 13567 standard for the structuring of building information on layers, and the IFC standard for building product models. Based on a literature study combined with two qualitative interview studies with domain experts, a process model is proposed to describe and interpret the contrasting histories of past CAD standardisation processes.