32 resultados para ISM : cosmic rays
em Helda - Digital Repository of University of Helsinki
Resumo:
ALICE (A Large Ion Collider Experiment) is the LHC (Large Hadron Collider) experiment devoted to investigating the strongly interacting matter created in nucleus-nucleus collisions at the LHC energies. The ALICE ITS, Inner Tracking System, consists of six cylindrical layers of silicon detectors with three different technologies; in the outward direction: two layers of pixel detectors, two layers each of drift, and strip detectors. The number of parameters to be determined in the spatial alignment of the 2198 sensor modules of the ITS is about 13,000. The target alignment precision is well below 10 micron in some cases (pixels). The sources of alignment information include survey measurements, and the reconstructed tracks from cosmic rays and from proton-proton collisions. The main track-based alignment method uses the Millepede global approach. An iterative local method was developed and used as well. We present the results obtained for the ITS alignment using about 10^5 charged tracks from cosmic rays that have been collected during summer 2008, with the ALICE solenoidal magnet switched off.
Resumo:
Aerosol particles deteriorate air quality, atmospheric visibility and our health. They affect the Earth s climate by absorbing and scattering sunlight, forming clouds, and also via several feed-back mechanisms. The net effect on the radiative balance is negative, i.e. cooling, which means that particles counteract the effect of greenhouse gases. However, particles are one of the poorly known pieces in the climate puzzle. Some of the airborne particles are natural, some anthropogenic; some enter the atmosphere in particle form, while others form by gas-to-particle conversion. Unless the sources and dynamical processes shaping the particle population are quantified, they cannot be incorporated into climate models. The molecular level understanding of new particle formation is still inadequate, mainly due to the lack of suitable measurement techniques to detect the smallest particles and their precursors. This thesis has contributed to our ability to measure newly formed particles. Three new condensation particle counter applications for measuring the concentration of nano-particles were developed. The suitability of the methods for detecting both charged and electrically neutral particles and molecular clusters as small as 1 nm in diameter was thoroughly tested both in laboratory and field conditions. It was shown that condensation particle counting has reached the size scale of individual molecules, and besides measuring the concentration they can be used for getting size information. In addition to atmospheric research, the particle counters could have various applications in other fields, especially in nanotechnology. Using the new instruments, the first continuous time series of neutral sub-3 nm particle concentrations were measured at two field sites, which represent two different kinds of environments: the boreal forest and the Atlantic coastline, both of which are known to be hot-spots for new particle formation. The contribution of ions to the total concentrations in this size range was estimated, and it could be concluded that the fraction of ions was usually minor, especially in boreal forest conditions. Since the ionization rate is connected to the amount of cosmic rays entering the atmosphere, the relative contribution of neutral to charged nucleation mechanisms extends beyond academic interest, and links the research directly to current climate debate.
Resumo:
In this thesis we examine multi-field inflationary models of the early Universe. Since non-Gaussianities may allow for the possibility to discriminate between models of inflation, we compute deviations from a Gaussian spectrum of primordial perturbations by extending the delta-N formalism. We use N-flation as a concrete model; our findings show that these models are generically indistinguishable as long as the slow roll approximation is still valid. Besides computing non-Guassinities, we also investigate Preheating after multi-field inflation. Within the framework of N-flation, we find that preheating via parametric resonance is suppressed, an indication that it is the old theory of preheating that is applicable. In addition to studying non-Gaussianities and preheatng in multi-field inflationary models, we study magnetogenesis in the early universe. To this aim, we propose a mechanism to generate primordial magnetic fields via rotating cosmic string loops. Magnetic fields in the micro-Gauss range have been observed in galaxies and clusters, but their origin has remained elusive. We consider a network of strings and find that rotating cosmic string loops, which are continuously produced in such networks, are viable candidates for magnetogenesis with relevant strength and length scales, provided we use a high string tension and an efficient dynamo.
Resumo:
The first quarter of the 20th century witnessed a rebirth of cosmology, study of our Universe, as a field of scientific research with testable theoretical predictions. The amount of available cosmological data grew slowly from a few galaxy redshift measurements, rotation curves and local light element abundances into the first detection of the cos- mic microwave background (CMB) in 1965. By the turn of the century the amount of data exploded incorporating fields of new, exciting cosmological observables such as lensing, Lyman alpha forests, type Ia supernovae, baryon acoustic oscillations and Sunyaev-Zeldovich regions to name a few. -- CMB, the ubiquitous afterglow of the Big Bang, carries with it a wealth of cosmological information. Unfortunately, that information, delicate intensity variations, turned out hard to extract from the overall temperature. Since the first detection, it took nearly 30 years before first evidence of fluctuations on the microwave background were presented. At present, high precision cosmology is solidly based on precise measurements of the CMB anisotropy making it possible to pinpoint cosmological parameters to one-in-a-hundred level precision. The progress has made it possible to build and test models of the Universe that differ in the way the cosmos evolved some fraction of the first second since the Big Bang. -- This thesis is concerned with the high precision CMB observations. It presents three selected topics along a CMB experiment analysis pipeline. Map-making and residual noise estimation are studied using an approach called destriping. The studied approximate methods are invaluable for the large datasets of any modern CMB experiment and will undoubtedly become even more so when the next generation of experiments reach the operational stage. -- We begin with a brief overview of cosmological observations and describe the general relativistic perturbation theory. Next we discuss the map-making problem of a CMB experiment and the characterization of residual noise present in the maps. In the end, the use of modern cosmological data is presented in the study of an extended cosmological model, the correlated isocurvature fluctuations. Current available data is shown to indicate that future experiments are certainly needed to provide more information on these extra degrees of freedom. Any solid evidence of the isocurvature modes would have a considerable impact due to their power in model selection.
Resumo:
Hydrophobins are a group of particularly surface active proteins. The surface activity is demonstrated in the ready adsorption of hydrophobins to hydrophobic/hydrophilic interfaces such as the air/water interface. Adsorbed hydrophobins self-assemble into ordered films, lower the surface tension of water, and stabilize air bubbles and foams. Hydrophobin proteins originate from filamentous fungi. In the fungi the adsorbed hydrophobin films enable the growth of fungal aerial structures, form protective coatings and mediate the attachment of fungi to solid surfaces. This thesis focuses on hydrophobins HFBI, HFBII, and HFBIII from a rot fungus Trichoderma reesei. The self-assembled hydrophobin films were studied both at the air/water interface and on a solid substrate. In particular, using grazing-incidence x-ray diffraction and reflectivity, it was possible to characterize the hydrophobin films directly at the air/water interface. The in situ experiments yielded information on the arrangement of the protein molecules in the films. All the T. reesei hydrophobins were shown to self-assemble into highly crystalline, hexagonally ordered rafts. The thicknesses of these two-dimensional protein crystals were below 30 Å. Similar films were also obtained on silicon substrates. The adsorption of the proteins is likely to be driven by the hydrophobic effect, but the self-assembly into ordered films involves also specific protein-protein interactions. The protein-protein interactions lead to differences in the arrangement of the molecules in the HFBI, HFBII, and HFBIII protein films, as seen in the grazing-incidence x-ray diffraction data. The protein-protein interactions were further probed in solution using small-angle x-ray scattering. Both HFBI and HFBII were shown to form mainly tetramers in aqueous solution. By modifying the solution conditions and thereby the interactions, it was shown that the association was due to the hydrophobic effect. The stable tetrameric assemblies could tolerate heating and changes in pH. The stability of the structure facilitates the persistence of these secreted proteins in the soil.
Resumo:
We study the impact of cosmic inhomogeneities on the interpretation of SNe observations. We build an inhomogeneous universe model that can confront supernova data and yet is reasonably well compatible with the Copernican Principle. Our model combines a relatively small local void, that gives apparent acceleration at low redshifts, with a meatball model that gives sizeable lensing (dimming) at high redshifts. Together these two elements, which focus on different effects of voids on the data, allow the model to mimic the concordance model.
Resumo:
Cosmic Clowns: Convention, Invention, and Inversion in the Yaqui Easter Ritual is an ethnographic study of masked clown figures called Chapayekas. They represent Judas and the Roman soldiers in the Passion play that forms the narrative core of the Easter ritual of the Yaquis, an indigenous group in Sonora, Mexico. The study looks at how the Chapayeka is created as a ritual figure, how their performance is constructed, and what the part of the clown is in the dynamics of the ritual. The material was gathered over three periods of anthropological fieldwork in Cócorit, Sonora during Easter in 2004, 2006 and 2007. The Chapayeka masks portray foreigners, animals, mythological figures, and even figures from television and movies. They combine two kinds of performance: they perform set, conventional actions, and improvise and invent new ones. This creates dialectics of invention and convention that allow the figure to mediate between the ritual and its context and different kinds of beings within the Yaqui cosmology. The conventional side of their performance is a cycle of death and rebirth that is an inversion of the cycle of Jesus. Through invention, they separate themselves from the other performers and make themselves powerful. Alternation between the two modes enhances that power and brings it into the conventions of the ritual; ultimately the Chapayekas revitalize the entire ritual. The study finds that the clowns are extremely important to the continuity of both ritual and culture, as the combination of continuity and change, convention and invention, is what makes it possible to recreate the conventions of Yaqui culture as powerful and compelling in various contexts. Another factor is the prevalence of dialectical mediation, which relates concepts by defining them against each other as opposites, and makes it possible to cross a boundary while keeping it intact. Clowns embody and create dialectics to mediate boundaries while guarding against relativization, the disappearance of distinctions. The Chapayekas create and constitute boundaries between the self and other, microcosm and macrocosm, sacred and profane. The study argues that all clown and trickster figures are characterized by constantly alternating between invention and convention; this is what connects them to the collective and moral aspect of culture and, at the same time, makes them unpredictable and powerful. It is possible to do justice to the opposed aspects of these ambiguous and paradoxical figures by taking into account the different foundations and contextual effects of the different modes of symbolization.
Resumo:
The aim of this study was to explore the spirituality of Finnish academically gifted 12 13-year old pre-adolescents (N = 101). Their spirituality was investigated through the following three questions: (1) What is their relationship to religion? (2) How do they perceive transcendence? and (3) How does their search for meaning integrate into their lives? A total of 60 girls and 41 boys participated in the study. They attend a special school, Helsingin Suomalainen yhteiskoulu, in Helsinki, Finland. The school includes classes from grade 3 to upper secondary school and has an entrance test. This study is part of a research project called Actualizing Finnish Giftedness which is funded by the Finnish Academy between 2000 2007 and is led by Professor Tirri. The research project is based on Gardner s Multiple Intelligences theory (Gardner 1993) and on Hay s (1998) work on spirituality. The data in this study was gathered in 2003 and 2004. It includes both qualitative and quantitative material. The emphasis is on data gathered with interviews. The mixed method approach was used as the methodological framework for connecting the qualitative content analysis, phenomenological approach and the quantitative tests of this study. The results of the sub-studies are reported in full in the four original articles. First, the articles show that the pupils connect religion mainly with Christian institutions and do not consider religion and spirituality to overlap. Second, the articles show that the pupils believe in God and the interference of God in their lives and they think that reality includes a spiritual dimension. Third, the pupils had four kinds of existentially significant interests: personal, transcendental, cosmic and ethical. Cosmic interests were especially highlighted in the article concerning boys as nature and science were reported to be integral sources for their existential thinking. In addition, perceptions on God seemed to be connected to the individual s perception on the meaning of life. In RE, spiritual development has been a constant topic of interest since the late eighties. Likewise, recently in gifted education there have been discussions concerning spiritual intelligence (Gardner 1999) and spirituality of the gifted (Kerr & Cohn 2001). Based on the empirical results of the study, this study concludes that education wishing to promote spiritual development should aim at being existentially relevant to the pupils and use their existential search as an integrative framework for their individual talents and skills.
Resumo:
Thin films of various metal fluorides are suited for optical coatings from infrared (IR) to ultraviolet (UV) range due to their excellent light transmission. In this work, novel metal fluoride processes have been developed for atomic layer deposition (ALD), which is a gas phase thin film deposition method based on alternate saturative surface reactions. Surface controlled self-limiting film growth results in conformal and uniform films. Other strengths of ALD are precise film thickness control, repeatability and dense and pinhole free films. All these make the ALD technique an ideal choice also for depositing metal fluoride thin films. Metal fluoride ALD processes have been largely missing, which is mostly due to a lack of a good fluorine precursor. In this thesis, TiF4 precursor was used for the first time as the fluorine source in ALD for depositing CaF2, MgF2, LaF3 and YF3 thin films. TaF5 was studied as an alternative novel fluorine precursor only for MgF2 thin films. Metal-thd (thd = 2,2,6,6-tetramethyl-3,5-heptanedionato) compounds were applied as the metal precursors. The films were grown at 175 450 °C and they were characterized by various methods. The metal fluoride films grown at higher temperatures had generally lower impurity contents with higher UV light transmittances, but increased roughness caused more scattering losses. The highest transmittances and low refractive indices below 1.4 (at 580 nm) were obtained with MgF2 samples. MgF2 grown from TaF5 precursor showed even better UV light transmittance than MgF2 grown from TiF4. Thus, TaF5 can be considered as a high quality fluorine precursor for depositing metal fluoride thin films. Finally, MgF2 films were applied in fabrication of high reflecting mirrors together with Ta2O5 films for visible region and with LaF3 films for UV region. Another part of the thesis consists of applying already existing ALD processes for novel optical devices. In addition to the high reflecting mirrors, a thin ALD Al2O3 film on top of a silver coating was proven to protect the silver mirror coating from tarnishing. Iridium grid filter prototype for rejecting IR light and Ir-coated micro channel plates for focusing x-rays were successfully fabricated. Finally, Ir-coated Fresnel zone plates were shown to provide the best spatial resolution up to date in scanning x-ray microscopy.
Resumo:
Satanism in the Finnish Youth Culture of the 1990s The aim of this study was to investigate Satanism among Finnish youth in the 1990s. Thematic interviews of young Finnish Satanists are the basic material of this study. The research employs a theoretical framework derived from narrative psychology and the role-theoretical thinking of Dan P. McAdams. The young Satanists in Finland have been divided into two different groups: the criminal and drug using "devil-worshipping gangs"; and the more educated and philosophically oriented "Satanists" (Heino 1993). What can we say about this division? In the 1990s around Finland, there were young people calling themselves as devil- worshippers (either singular or in groups). They were strongly committed to a mythical devilish and cosmic battle, which they believed was going on in this world. They had problems with their mental health, also in their family socialization and peer groups. In their personal attitudes they were either active fighters or passive tramps. There were also rationally oriented young Satanists, that were ritually active and mainly atheistic. They strongly expressed their personal experiences of being individual and of being different than others. In their personal attitudes they were critical fighters and active survivors. They saw their lives through the satanistic 'finding-oneself experience'. They understood themselves as a "postmodern tribe" (Michel Maffesoli's sosiocultural concept): their sense of themselves was that of a dynamic collectivity which is social, dynamic, nonlocal and mythically historical. Death and black metal culture in the 1990s formed a common space for youth culture, where young individuals could work out their feelings and express their attitudes to life using dark satanic themes and symbols. The sense of "otherness" (also other than satanic) and collective demands for authenticity were essential tools that were used for identity work here. Personal disengagement from satanic/satanistic groups were observed to be gradual or quite rapid. Religious conversions back-and-forth also accured. At the end of the 1990s all off satanism in Finland bore a negative devil-worshipping stigma. Ritual homicide in South-Finland (Kerava/Hyvinkää) was connected to Satanism, which then became unpopular both in the personal life stories and alternative youth cultural circles at the beginning of the 2000s.
Resumo:
The structure and operation of CdTe, CdZnTe and Si pixel detectors based on crystalline semiconductors, bump bonding and CMOS technology and developed mainly at Oy Simage Ltd. And Oy Ajat Ltd., Finland for X- and gamma ray imaging are presented. This detector technology evolved from the development of Si strip detectors at the Finnish Research Institute for High Energy Physics (SEFT) which later merged with other physics research units to form the Helsinki Institute of Physics (HIP). General issues of X-ray imaging such as the benefits of the method of direct conversion of X-rays to signal charge in comparison to the indirect method and the pros and cons of photon counting vs. charge integration are discussed. A novel design of Si and CdTe pixel detectors and the analysis of their imaging performance in terms of SNR, MTF, DQE and dynamic range are presented in detail. The analysis shows that directly converting crystalline semiconductor pixel detectors operated in the charge integration mode can be used in X-ray imaging very close to the theoretical performance limits in terms of efficiency and resolution. Examples of the application of the developed imaging technology to dental intra oral and panoramic and to real time X-ray imaging are given. A CdTe photon counting gamma imager is introduced. A physical model to calculate the photo peak efficiency of photon counting CdTe pixel detectors is developed and described in detail. Simulation results indicates that the charge sharing phenomenon due to diffusion of signal charge carriers limits the pixel size of photon counting detectors to about 250 μm. Radiation hardness issues related to gamma and X-ray imaging detectors are discussed.
Resumo:
This thesis is a study of the x-ray scattering properties of tissues and tumours of the breast. Clinical radiography is based on the absorption of the x-rays when passing right through the human body and gives information about the densities of the tissues. Besides being absorbed, x-rays may change their direction within the tissues due to elastic scattering or even to refraction. The phenomenon of scattering is a nuisance to radiography in general, and to mammography in particular, because it reduces the quality of the images. However, scattered x-rays bear very useful information about the structure of the tissues at the supra-molecular level. Some pathologies, like breast cancer, produce alterations to the structures of the tissues, being especially evident in collagen-rich tissues. On the other hand, the change of direction due to refraction of the x-rays on the tissue boundaries can be mapped. The diffraction enhanced imaging (DEI) technique uses a perfect crystal to convert the angular deviations of the x-rays into intensity variations, which can be recorded as images. This technique is of especial interest in the cases were the densities of the tissues are very similar (like in mammography) and the absorption images do not offer enough contrast. This thesis explores the structural differences existing in healthy and pathological collagen in breast tissue samples by the small-angle x-ray scattering (SAXS) technique and compares these differences with the morphological information found in the DEI images and the histo-pathology of the same samples. Several breast tissue samples were studied by SAXS technique in the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. Scattering patterns of the different tissues of the breast were acquired and compared with the histology of the samples. The scattering signals from adipose tissue (fat), connective tissue (collagen) and necrotic tissue were identified. Moreover, a clear distinction could be done between the scattering signals from healthy collagen and from collagen from an invasive tumour. Scattering from collagen is very characteristic. It includes several scattering peaks and scattering features that carry information about the size and the spacing of the collagen fibrils in the tissues. It was found that the collagen fibrils in invaded tumours were thinner and had a d-spacing length 0,7% longer that fibrils from healthy tumours. The scattering signals from the breast tissues were compared with the histology by building colour-coded maps across the samples. They were also imaged with the DEI technique. There was a total agreement between the scattering maps, the morphological features seen in the images and the information of the histo- pathological examination. The thesis demonstrates that the x-ray scattering signal can be used to characterize tissues and that it carries important information about the pathological state of the breast tissues, thus showing the potential of the SAXS technique as a possible diagnostic tool for breast cancer.