5 resultados para IMATINIB MESYLATE

em Helda - Digital Repository of University of Helsinki


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease with unknown aetiology and poor prognosis. IPF is characterized by alveolar epithelial damage that leads tissue remodelling and ultimately to the loss of normal lung architecture and function. Treatment has been focused on anti-inflammatory therapies, but due to their poor efficacy new therapeutic modalities are being sought. There is a need for early diagnosis and also for differential diagnostic markers for IPF and other interstitial lung diseases. The study utilized patient material obtained from bronchoalveolar lavage (BAL), diagnostic biopsies or lung transplantation. Human pulmonary fibroblast cell cultures were propagated and asbestos-induced pulmonary fibrosis in mice was used as an experimental animal model of IPF. The possible markers for IPF were scanned by immunohistochemistry, RT-PCR, ELISA and western blot. Matrix metalloproteinases (MMPs) are proteolytic enzymes that participate in tissue remodelling. Microarray studies have introduced potential markers that could serve as additional tools for the assessment of IPF and one of the most promising was MMP 7. MMP-7 protein levels were measured in the BAL fluid of patients with idiopathic interstitial lung diseases or idiopathic cough. MMP-7 was however similarly elevated in the BAL fluid of all these disorders and thus cannot be used as a differential diagnostic marker for IPF. Activation of transforming growth factor (TGF)-ß is considered to be a key element in the progression of IPF. Bone morphogenetic proteins (BMP) are negative regulators of intracellular TGF-ß signalling and BMP-4 signalling is in turn negatively regulated by gremlin. Gremlin was found to be highly upregulated in the IPF lungs and IPF fibroblasts. Gremlin was detected in the thickened IPF parenchyma and endothelium of small capillaries, whereas in non-specific interstitial pneumonia it localized predominantly in the alveolar epithelium. Parenchymal gremlin immunoreactivity might indicate IPF-type interstitial pneumonia. Gremlin mRNA levels were higher in patients with end-stage fibrosis suggesting that gremlin might be a marker for more advanced disease. Characterization of the fibroblastic foci in the IPF lungs showed that immunoreactivity to platelet-derived growth factor (PDGF) receptor-α and PDGF receptor-β was elevated in IPF parenchyma, but the fibroblastic foci showed only minor immunoreactivity to the PDGF receptors or the antioxidant peroxiredoxin II. Ki67 positive cells were also observed predominantly outside the fibroblastic foci, suggesting that the fibroblastic foci may not be composed of actively proliferating cells. When inhibition of profibrotic PDGF-signalling by imatinib mesylate was assessed, imatinib mesylate reduced asbestos-induced pulmonary fibrosis in mice as well as human pulmonary fibroblast migration in vitro but it had no effect on the lung inflammation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human central nervous system (CNS) tumors are a heterogeneous group of tumors occurring in brain, brainstem and spinal cord. Malignant gliomas (astrocytic and oligodendroglial tumors), which arise from the neuroepithelial cells are the most common CNS neoplasms in human. Malignant gliomas are highly aggressive and invasive tumors, and have a very poor prognosis. The development and progression of gliomas involve a stepwise accumulation of genetic alterations that generally affect either signal transduction pathways activated by receptor tyrosine kinases (RTKs), or cell cycle arrest pathways. Constitutive activation or deregulated signaling by RTKs is caused by gene amplification, overexpression or mutations. The aberrant RTK signaling results in turn in the activation of several downstream pathways, which ultimately lead to malignant transformation and tumor proliferation. Many genetic abnormalities implicated in nervous system tumors involve the genes located at the chromosomal region 4q12. This locus harbors the receptor tyrosine kinases KIT, PDGFRA and VEGFR2, and other genes (REST, LNX1) with neural function. Gene amplification and protein expression of KIT, PDGFRA, and VEGFR2 was studied using clinical tumor material. REST and LNX1, as well as NUMBL, the interaction partner of LNX1, were studied for their gene mutations and amplifications. In our studies, amplification of LNX1 was associated with KIT and PDGFRA amplification in glioblastomas, and coamplification of KIT, PDGFRA and VEGFR2 was detected in medulloblastomas and CNS primitive neuroectodermal tumors. PDGFRA amplification was also correlated with poor overall survival. Coamplification of KIT, PDGFRA and VEGFR2 was observed in a subset of human astrocytic and oligodendroglial tumors. We suggest that genes at 4q12 could be a part of a larger amplified region, which is deregulated in gliomas, and could be used as a prognostic marker of tumorigenic process. The signaling pathways activated due to gene amplifications, activating gene mutations, and overexpressed proteins may be useful as therapeutic targets for glioma treatment. This study also includes the characterization of KIT overexpressing astrocytes, analyzed by various in vitro functional assays. Our results show that overexpression of KIT in mouse astrocytes promotes cell proliferation and anchorage-independent growth, as well as phenotypic changes in the cells. Furthermore, the increased proliferation is partly inhibited by imatinib, a small molecule inhibitor of KIT. These results suggest that KIT may play a role in astrocyte growth regulation, and might have an oncogenic role in brain tumorigenesis. Elucidation of the altered signaling pathways due to specific gene amplifications, activating gene mutations, and overexpressed proteins may be useful as therapeutic targets for glioma treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vascular intimal hyperplasia is a major complication following angioplasty. The hallmark feature of this disorder is accumulation of dedifferentiated smooth muscle cells (SMCs) to the luminal side of the injured artery, cellular proliferation, migration, and synthesis of extracellular matrix. This finally results in intimal hyperplasia, which is currently considered an untreatable condition. According to current knowledge, a major part of neointimal cells derive from circulating precursor cells. This has outdated the traditional in vitro cell culture methods of studying neointimal cell migration and proliferation using cultured medial SMCs. Somatostatin and some of its analogs with different selectivity for the five somatostatin receptors (sst1 through sst5) have been shown to have vasculoprotective properties in animal studies. However, clinical trials using analogs selective for sst2/sst3/sst5 to prevent restenosis after percutaneous transluminal coronary angioplasty (PTCA) have failed to show any major benefits. Sirolimus is a cell cycle inhibitor that has been suggested to act synergistically with the protein-tyrosine kinase inhibitor imatinib to inhibit intimal hyperplasia in rat already at well-tolerated submaximal oral doses. The mechanisms behind this synergy and its long-term efficacy are not known. The aim of this study was to set up an ex vivo vascular explant culture model to measure neointimal cell activity without excluding the participation of circulating progenitor cells. Furthermore, two novel potential vasculoprotective treatment strategies were evaluated in detail in rat models of intimal hyperplasia and in the ex vivo explant model: sst1/sst4-selective somatostatin receptor analogs and combination treatment with sirolimus and imatinib. This study shows how whole vessel explants can be used to study the kinetics of neointimal cells and their progenitors, and to evaluate the anti-migratory and anti-proliferative properties of potential vasculoprotective compounds. It also shows how the influx of neointimal progenitor cells occurs already during the first days after vascular injury, how the contribution of cell migration is more important in the injury response than cell proliferation, and how the adventitia actively contribute in vascular repair. The vasculoprotective effect of somatostatin is mediated preferentially through sst4, and through inhibition of cell migration rather than of proliferation, which may explain why sst2/sst3/sst5-selective analogs have failed in clinical trials. Furthermore, a brief early oral treatment with the combination of sirolimus and imatinib at submaximal doses results in long-term synergistic suppression of intimal hyperplasia. The synergy is a result of inhibition of post-operative thrombocytosis and leukocytosis, inhibition of neointimal cell migration to the injury-site, and maintenance of cell integrity by inhibition of apoptosis and SMC dedifferentiation. In conclusion, the influx of progenitor cells already during the first days after injury and the high neointimal cell migratory activity underlines the importance of early therapeutic intervention with anti-migratory compounds to prevent neointimal hyperplasia. Sst4-selective analogs and the combination therapy with sirolimus and imatinib represent potential targets for the development of such vasculoprotective therapies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chronic myeloid leukemia (CML) is a malignant clonal blood disease that originates from a pluripotent hematopoietic stem cell. The cytogenetic hallmark of CML, the Philadelphia chromosome (Ph), is formed as a result of reciprocal translocation between chromosomes 9 and 22, which leads to a formation of a chimeric BCR-ABL fusion gene. The BCR-ABL protein is a constitutively active tyrosine kinase that changes the adhesion properties of cells, constitutively activates mitogenic signaling, enhances cell proliferation and reduces apoptosis. This results in leukemic growth and the clinical disease, CML. With the advent of targeted therapies against the BCR-ABL fusion protein, the treatment of CML has changed considerably during the recent decade. In this thesis, the clinical significance of different diagnostic methods and new prognostic factors in CML have been assessed. First, the association between two different methods for measuring CML disease burden (the RQ-PCR and the high mitotic index metaphase FISH) was assessed in bone marrow and peripheral blood samples. The correlation between positive RQ-PCR and metaphase FISH samples was high. However, RQ-PCR was more sensitive and yielded measurable transcripts in 40% of the samples that were negative by metaphase FISH. The study established a laboratory-specific conversion factor for setting up the International Scale when standardizing RQ-PCR measurements. Secondly, the amount of minimal residual disease (MRD) after allogeneic hematopoietic stem cell transplantation (alloHSCT) was determined. For this, metaphase FISH was done for the bone marrow samples of 102 CML patients. Most (68%), had no residual cells during the entire follow-up time. Some (12 %) patients had minor (<1%) MRD which decreased even further with time, whereas 19% had a progressive rise in MRD that exceeded 1% or had more than 1% residual cells when first detected. Residual cells did not become eradicated spontaneously if the frequency of Ph+ cells exceeded 1% during follow-up. Next, the impact of deletions in the derivative chromosome 9, was examined. Deletions were observed in 15% of the CML patients who later received alloHSCT. After alloHSCT, there was no difference in the total relapse rate in patients with or without deletions. Nor did the estimates of overall survival, transplant-related mortality, leukemia-free survival and relapse-free time show any difference between these groups. When conventional treatment regimens are used, the der(9) status could be an important criterion, in conjunction with other prognostic factors, when allogeneic transplantation is considered. The significance of der(9) deletions for patients treated with tyrosine kinase inhibitors is not clear and requires further investigation. In addition to the der(9) status of the patient, the significance of bone marrow lymphocytosis as a prognostic factor in CML was assessed. Bone marrow lymphocytosis during imatinib therapy was a positive predictive factor and heralded optimal response. When combined with major cytogenetic response at three months of treatment, bone marrow lymphocytosis predicted a prognostically important major molecular response at 18 months of imatinib treatment. Although the validation of these findings is warranted, the determination of the bone marrow lymphocyte count could be included in the evaluation of early response to imatinib treatment already now. Finally, BCR-ABL kinase domain mutations were studied in CML patients resistant against imatinib treatment. Point mutations detected in the kinase domain were the same as previously reported, but other sequence variants, e.g. deletions or exon splicing, were also found. The clinical significance of the other variations remains to be determined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heart transplantation is the only therapeutic modality for many end-stage heart diseases but poor long-term survival remains a challenging problem. This is mainly due to the development of cardiac allograft arteriosclerosis (TxCAD) that is an accelerated form of coronary artery disease. Both traditional cardiovascular and transplantation-related risk factors for TxCAD have been identified but options for therapy are limited. TxCAD involves dysfunction of cardiac allograft vascular cells. Activated endothelial cells (EC) regulate allograft inflammation and secrete smooth muscle cell (SMC) growth factors. In turn, SMC and their progenitors invade the intima of the injured vessels and occlude the affected coronary arteries. Different vascular growth factors have to be delicately regulated in normal vascular development. In the present study, experimental heterotopic transplantation models were used to study the role of angiogenic and pro-inflammatory vascular endothelial growth factor (VEGF), EC growth factor angiopoietin (Ang), and SMC mitogen platelet-derived growth factor (PDGF) in the development of TxCAD. Pharmacological and gene transfer approaches were used to target these growth factors and to assess their therapeutic potential. This study shows that alloimmune response in heart transplants upregulates VEGF expression, and induces allograft angiogenesis that involves donor-derived primitive EC. Intracoronary adenoviral VEGF gene transfer increased macrophage infiltration, intimal angiogenesis and TxCAD. VEGF inhibition with PTK787 decreased allograft inflammation and TxCAD, and simultaneous PDGF inhibition with imatinib further decreased TxCAD. Specific inhibition of two VEGF-receptors (VEGFR) decreased allograft inflammation and TxCAD, and VEGFR-2 inhibition normalized the density of primitive and mature capillaries in the allografts. Adenovirus-mediated transient Ang1 expression in the allograft had anti-inflammatory and anti-arteriosclerotic effects. Adeno-associated virus (AAV)-mediated prolonged Ang1 or Ang2 expression had similar anti-inflammatory effects. However, AAV-Ang1 activated allograft SMC whereas AAV-Ang2 had no effects on SMC activation and decreased the development of TxCAD. These studies indicate an interplay of inflammation, angiogenesis and arteriosclerosis in cardiac allografts, and show that vascular growth factors are important regulators in the process. Also, VEGF inhibition, PDGF inhibition and angiopoietin therapy with clinically-relevant pharmacological agents or novel gene therapy approaches may counteract vascular dysfunction in cardiac allografts, and have beneficial effects on the survival of heart transplant patients in the future.