51 resultados para Hormone-Related Cancer, Endometrial, SNP, MMP

em Helda - Digital Repository of University of Helsinki


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many of the genes predisposing to highly penetrant colorectal cancer (CRC) syndromes, including hereditary non-polyposis colorectal cancer (MLH1, MSH2, MSH6, PMS2), familial adenomatous polyposis (APC), Peutz-Jeghers syndrome (LKB1), juvenile polyposis (SMAD4, BMPR1A), MYH-associated polyposis (MYH), and Cowden syndrome (PTEN) have already been discovered. Identification of these genes has allowed a more precise classification of the hereditary CRC syndromes and provided a means for predictive genetic testing and surveillance. Some of the genes are also involved in sporadic cancer forms, and therefore the investigation of the rare CRC syndromes has been a breakthrough for general cancer research. Despite the accumulating knowledge on hereditary cancer syndromes, a significant number of familial CRCs remain molecularly unexplained after genetic testing, reflecting the possibility of other predisposing genes or existence of novel syndromes. Moreover, genetic variants conferring low-penetrance risk are still largely unknown. In this study, we examined the role of some new high- and low-penetrance alleles on CRC predisposition. We identified disease causing MYH mutations in a subset (9%) of patients with APC and AXIN2 mutation negative adenomatous polyposis. Due to differences in the pattern of inheritance and clinical manifestation, screening for mutations in MYH is beneficial in view of genetic counselling and surveillance. A novel functionally deficient MYH founder mutation A459D was identified in the Finnish population, and this finding had immediate clinical implications for genetic counselling of at risk families. Many patients with hamartomatous polyposis remain without molecular diagnosis due to atypical phenotypes. We therefore sought to classify 49 patients with unexplained hamartomatous or hyperplastic/mixed polyposis by extensive molecular analyses of PTEN, LKB1, BMPR1A, SMAD4, ENG, BRAF, MYH, and BHD along with revision of polyp histology. Mutations were identified in 11/49 (22%) of the patients. In 6 cases the molecular diagnosis was re-classified guiding surveillance and decisions for prophylactic surgery. Re-evaluation of polyp histology with subsequent more accurate selection of candidate gene analyses is beneficial and can be recommended for patients with unexplained polyposis. Furthermore, germline mutations in ENG underlying juvenile polyposis were described for the first time, characterizing a possible novel genetically defined form of hereditary CRC. Association analyses on two putative low-penetrance alleles, NOD2 3020insC and MDM2 SNP309 were performed in a population-based series of 1042 Finnish CRC patients and in cancer-free controls. In contrast to previous results, NOD2 3020insC did not associate with CRC or age at disease onset in the Finnish population. These data suggest that NOD2 3020insC alone might not be sufficient for CRC predisposition. MDM2 SNP309 was as common in the CRC cohort as in the healthy controls. Interesting trends, however, were observed, which after correction for multiple testing did not reach statistical significance. SNP309 was more common in female CRC patients and a trend towards an earlier age at disease onset was observed in women with SNP309. Subsequent studies have supported this observation and SNP309 could affect gender- or hormone-related tumorigenesis. Finally, a large-scale unbiased effort was designed to characterize the complete mutatome of CRC with microsatellite instability (MSI). Using an approach combining expression microarray and genome database searches, we were able to identify putative MSI target genes. Further characterization of one of the genes suggested that it might play a role also in microsatellite stable CRC and Peutz-Jeghers syndrome pathogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tissue destruction associated with the periodontal disease progression is caused by a cascade of host and microbial factors and proteolytic enzymes. Aberrant laminin-332 (Ln-332), human beta defensin (hBD), and matrix metalloproteinase (MMP) functions have been found in oral inflammatory diseases. The null-allele mouse model appears as the next step in oral disease research. The MMP-8 knock-out mouse model allowed us to clarify the involvement of MMP-8 in vivo in oral and related inflammatory diseases where MMP-8 is suggested to play a key role in tissue destruction. The cleaved Ln-332 γ2-chain species has been implicated in the apical migration of sulcular epithelial cells during the formation of periodontal pockets. We demonstrated that increased Ln-332 fragment levels in gingival crevicular fluid (GCF) are strongly associated with the severity of inflammation in periodontitis. Porphyromonas gingivalis trypsin-like proteinase can cleave an intact Ln-332 γ2-chain into smaller fragments and eventually promote the formation of periodontal pockets. hBDs are components of an innate mucosal defense against pathogenic microbes. Our results suggest that P. gingivalis trypsin-like proteinase can degrade hBD and thus reduce the innate immune response. Elevated levels and the increased activity of MMPs have been detected in several pathological tissue-destructive conditions where MMPs are shown to cleave extracellular matrix (ECM) and basement membrane (BM) molecules and to facilitate tissue destruction. Elevated levels of MMP-8 have been reported in many inflammatory diseases. In periodontitis, MMP-8 levels in gingival crevicular fluid (GCF) and in peri-implant sulcular fluid (PISF) are elevated at sites of active inflammation, and the increased levels of MMP-8 are mainly responsible for collagenase activity, which leads to tissue destruction. MMP-25, expressed by neutrophils, is involved in inflammatory diseases and in ECM turnover. MMP-26 can degrade ECM components and serve as an activator of other MMP enzymes. We further confirmed that increased levels and activation of MMP-8, -25, and -26 in GCF, PISF, and inflamed gingival tissue are associated with the severity of periodontal/peri-implant inflammation. We evaluated the role of MMP-8 in P. gingivalis-induced periodontitis by comparing MMP-8 knock-out (MMP8-/-) and wild-type mice. Surprisingly, MMP-8 significantly attenuated P. gingivalis-induced site-specific alveolar bone loss. We also evaluated systemic changes in serum immunoglobulin and lipoprotein profiles among these mouse groups. P. gingivalis infection increased HDL/VLDL particle size in the MMP-8-/- mice, which is an indicator of lipoprotein responses during systemic inflammation. Serum total LPS and IgG antibody levels were enhanced in both mice groups. P. gingivalis-induced periodontitis, especially in MMP-8-/- mice, is associated with severe alveolar bone loss and with systemic inflammatory and lipoprotein changes that are likely to be involved in early atherosclerosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone is a mineralized tissue that enables multiple mechanical and metabolic functions to be carried out in the skeleton. Bone contains distinct cell types: osteoblasts (bone-forming cells), osteocytes (mature osteoblast that embedded in mineralized bone matrix) and the osteoclasts (bone-resorbing cells). Remodelling of bone begins early in foetal life, and once the skeleton is fully formed in young adults, almost all of the metabolic activity is in this form. Bone is constantly destroyed or resorbed by osteoclasts and then replaced by osteoblasts. Many bone diseases, i.e. osteoporosis, also known as bone loss, typically reflect an imbalance in skeletal turnover. The cyclic adenosine monophosphate (cAMP) and the cyclic guanosine monophosphate (cGMP) are second messengers involved in a variety of cellular responses to such extracellular agents as hormones and neurotransmitters. In the hormonal regulation of bone metabolism, i.e. via parathyroid hormone (PTH), parathyroid hormone-related peptide (PTHrp) and prostaglandin E2 signal via cAMP. cAMP and cGMP are formed by adenylate and guanylate cyclases and are degraded by phosphodiesterases (PDEs). PDEs determine the amplitudes of cyclic nucleotide-mediated hormonal responses and modulate the duration of the signal. The activities of the PDEs are regulated by multiple inputs from other signalling systems and are crucial points of cross-talk between the pathways. Food-derived bioactive peptides are reported to express a variety of functions in vivo. The angiotensin-converting enzymes (ACEs) are involved in the regulation of the specific maturation or degradation of a number of mammalian bioactive peptides. The bioactive peptides offer also a nutriceutical and a nutrigenomic aspect to bone cell biology. The aim of this study was to investigate the influence of PDEs and bioactive peptides on the activation and the differentiation of human osteoblast cells. The profile of PDEs in human osteoblast-like cells and the effect of glucocorticoids on the function of cAMP PDEs, were investigated at the mRNA and enzyme levels. The effects of PDEs on bone formation and osteoblast gene expression were determined with chemical inhibitors and siRNAs (short interfering RNAs). The influence of bioactive peptides on osteoblast gene expression and proliferation was studied at the mRNA and cellular levels. This work provides information on how PDEs are involved in the function and the differentiation of osteoblasts. The findings illustrate that gene-specific silencing with an RNA interference (RNAi) method is useful in inhibiting, the gene expression of specific PDEs and further, PDE7 inhibition upregulates several osteogenic genes and increases bALP activity and mineralization in human mesenchymal stem cells-derived osteoblasts. PDEs appear to be involved in a mechanism by which glucocorticoids affect cAMP signaling. This may provide a potential route in the formation of glucocorticoid-induced bone loss, involving the down-regulation of cAMP-PDE. PDEs may play an important role in the regulation of osteoblastic differentiation. Isoleucine-proline-proline (IPP), a bioactive peptide, possesses the potential to increase osteoblast proliferation, differentiation and signalling.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Colorectal cancer is one of the three most common cancers today, for both men and women. Approximately 90% of the cases are sporadic while the remaining 10% is hereditary. Among this 10% is hereditary nonpolyposis colorectal cancer (HNPCC), an autosomal dominant disease, accounting for up to 13% of these cases. HNPCC is associated with germline mutations in four mismatch repair (MMR) genes, MLH1, MSH2, MSH6, and PMS2, and is characterized by a familial accumulation of endometrial, gastric, urological, and ovarian tumors, in addition to colorectal cancer. An important etiological characteristic of HNPCC is the presence of microsatellite instability (MSI), caused by mutations of the MMR genes. Approximately 15% of sporadic cases share the MSI+ trait. Colon cancer is believed to be a consequence of an accumulation of mutations in tumor suppressor genes and oncogenes, eventually resulting in tumor development. This phenomena is accelerated in HNPCC due the presence of an inherited mutation in the MMR genes, accounting for one of the two hits proposed to be needed by Knudson (1971) in order for the manifestation of the MSI phenotype. MMR alterations alone, however, do not occur in the majority of sporadic colon cancers, prompting searches for other mechanisms. One such mechanism found to play a role in colon cancer development was DNA methylation, which is known to play a role in MLH1 inactivation. Our objective was clarification of mechanisms associated with tumor development in both HNPCC and sporadic colorectal cancer in relation to tumorigenic mechanisms. Of particular interest were underlying mechanisms of MSI in sporadic colorectal cancers, with attention to DNA methylation changes and their correlation to MSI. Of additional interest were the genetic and epigenetic events leading to the HNPCC tumor spectrum, chiefly colon and endometrial cancers, in regards to what extent the somatic changes in target tissue explained this phenomenon. We made a number of important findings pertaining to these questions. First, MSI tumor development differs epigenetically from stable tumor development, possibly underlying developmental pathway differences. Additionally, while epigenetic modification, principally DNA methylation, is a major mechanism in sporadic MSI colorectal cancer MLH1 inactivation it does not play a significant role in HNPCC tumors with germline MLH1 mutations. This is possibly an explanation for tumorigenic pathways and clinicopathological characteristic differences between sporadic and hereditary MSI colorectal cancers. Finally, despite indistinguishable genetic predisposition for endometrial and colorectal cancers, instability profiles highlighting organ-specific differences, may be important HNPCC tumor spectrum determinants.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Due to the improved prognosis of many forms of cancer, an increasing number of cancer survivors are willing to return to work after their treatment. It is generally believed, however, that people with cancer are either unemployed, stay at home, or retire more often than people without cancer. This study investigated the problems that cancer survivors experience on the labour market, as well as the disease-related, sociodemographic and psychosocial factors at work that are associated with the employment and work ability of cancer survivors. The impact of cancer on employment was studied combining the data of Finnish Cancer Registry and census data of the years 1985, 1990, 1995 or 1997 of Statistics Finland. There were two data sets containing 46 312 and 12 542 people with cancer. The results showed that cancer survivors were slightly less often employed than their referents. Two to three years after the diagnosis the employment rate of the cancer survivors was 9% lower than that of their referents (64% vs. 73%), whereas the employment rate was the same before the diagnosis (78%). The employment rate varied greatly according to the cancer type and education. The probability of being employed was greater in the lower than in the higher educational groups. People with cancer were less often employed than people without cancer mainly because of their higher retirement rate (34% vs. 27%). As well as employment, retirement varied by cancer type. The risk of retirement was twofold for people having cancer of the nervous system or people with leukaemia compared to their referents, whereas people with skin cancer, for example, did not have an increased risk of retirement. The aim of the questionnaire study was to investigate whether the work ability of cancer survivors differs from that of people without cancer and whether cancer had impaired their work ability. There were 591 cancer survivors and 757 referents in the data. Even though current work ability of cancer survivors did not differ between the survivors and their referents, 26% of cancer survivors reported that their physical work ability, and 19% that their mental work ability had deteriorated due to cancer. The survivors who had other diseases or had had chemotherapy, most often reported impaired work ability, whereas survivors with a strong commitment to their work organization, or a good social climate at work, reported impairment less frequently. The aim of the other questionnaire study containing 640 people with the history of cancer was to examine extent of social support that cancer survivors needed, and had received from their work community. The cancer survivors had received most support from their co-workers, and they hoped for more support especially from the occupational health care personnel (39% of women and 29% of men). More support was especially needed by men who had lymphoma, had received chemotherapy or had a low education level. The results of this study show that the majority of the survivors are able to return to work. There is, however, a group of cancer survivors who leave work life early, have impaired work ability due to their illness, and suffer from lack of support from their work place and the occupational health services. Treatment-related, as well as sociodemographic factors play an important role in survivors' work-related problems, and presumably their possibilities to continue working.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Much of the global cancer research is focused on the most prevalent tumors; yet, less common tumor types warrant investigation, since A rare disorder is not necessarily an unimportant one . The present work discusses a rare tumor type, the benign adenomas of the pituitary gland, and presents the advances which, during the course of this thesis work, contributed to the elucidation of a fraction of their genetic background. Pituitary adenomas are benign neoplasms of the anterior pituitary lobe, accounting for approximately 15% of all intracranial tumors. Pituitary adenoma cells hypersecrete the hormones normally produced by the anterior pituitary tissue, such as growth hormone (GH) and prolactin (PRL). Despite their non-metastasizing nature, these adenomas can cause significant morbidity and have to be adequately treated; otherwise, they can compromise the patient s quality of life, due to conditions provoked by hormonal hypersecretion, such as acromegaly in the case of GH-secreting adenomas, or due to compressive effects to surrounding tissues. The vast majority of pituitary adenomas arise sporadically, whereas a small subset occur as component of familial endocrine-related tumor syndromes, such as Multiple Endocrine Neoplasia type 1 (MEN1) and Carney complex (CNC). MEN1 is caused by germline mutations in the MEN1 tumor suppressor gene (11q13), whereas the majority of CNC cases carry germline mutations in the PRKAR1A gene (17q24). Pituitary adenomas are also encountered in familial settings outside the context of MEN1 and CNC, but unlike in the latter syndromes, their genetic background until recently remained elusive. Evidence in previous literature supported the notion that a tumor suppressor gene on 11q13, residing very close to but still distinct from MEN1, causes genetic susceptibility to pituitary tumors. The aim of the study was to identify the genetic cause of a low penetrance form of Pituitary Adenoma Predisposition (PAP) in families from Northern Finland. The present work describes the methodological approach that led to the identification of aryl hydrocarbon receptor interacting protein (AIP) as the gene causing PAP. Combining chip-based technologies (SNP and gene expression arrays) with traditional gene mapping methods and genealogy data, we showed that germline AIP mutations cause PAP in familial and sporadic settings. PAP patients were diagnosed with mostly adenomas of the GH/PRL-secreting cell lineage. In Finland, two AIP mutations accounted for 16% of all patients diagnosed with GH-secreting adenomas, and for 40% of patients being younger than 35 years of age at diagnosis. AIP is suggested to act as a tumor suppressor gene, a notion supported by the nature of the identified mutations (most are truncating) and the biallelic inactivation of AIP in the tumors studied. AIP has been best characterized as a cytoplasmic interaction partner of aryl hydrocarbon receptor (AHR), also known as dioxin receptor, but it has other partners as well. The mechanisms that underlie AIP-mediated pituitary tumorigenesis are to date largely unknown and warrant further investigation. Because AIP was identified in the genetically homogeneous Finnish population, it was relevant to examine its contribution to PAP in other, more heterogeneous, populations. Analysis of pituitary adenoma patient series of various ethnic origins and differing clinical settings revealed germline AIP mutations in all cohorts studied, albeit with low frequencies (range 0.8-7.4%). Overall, PAP patients were typically diagnosed at a young age (range 8-41 years), mainly with GH-secreting adenomas, without strong family history of endocrine disease. Because many PAP patients did not display family history of pituitary adenomas, detection of the condition appeared challenging. AIP immunohistochemistry was tested as a molecular pre-screening tool on mutation-positive versus mutation-negative tumors, and proved to be a potentially useful predictor of PAP. Mutation screening of a large cohort of colorectal, breast, and prostate tumors did not reveal somatic AIP mutations. These tumors, apart from being the most prevalent among men and women worldwide, have been associated with acromegaly, particularly colorectal neoplasia. In this material, AIP did not appear to contribute to the pathogenesis of these common tumor types and other genes seem likely to play a role in such tumorigenesis. Finally, the contribution of AIP in pediatric onset pituitary adenomas was examined in a unique population-based cohort of sporadic pituitary adenoma patients from Italy. Germline AIP mutations may account for a subset of pediatric onset GH-secreting adenomas (in this study one of seven GH-secreting adenoma cases or 14.3%), and appear to be enriched among young (≤25 years old) patients. In summary, this work reveals a novel tumor susceptibility gene, namely AIP, which causes genetic predisposition to pituitary adenomas, in particular GH-secreting adenomas. Moreover, it provides molecular tools for identification of individuals predisposed for PAP. Further elaborate studies addressing the functional role of AIP in normal and tumor cells will hopefully expand our knowledge on endocrine neoplasia and reveal novel cellular mechanisms of pituitary tumorigenesis, including potential drug targets.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis presents a highly sensitive genome wide search method for recessive mutations. The method is suitable for distantly related samples that are divided into phenotype positives and negatives. High throughput genotype arrays are used to identify and compare homozygous regions between the cohorts. The method is demonstrated by comparing colorectal cancer patients against unaffected references. The objective is to find homozygous regions and alleles that are more common in cancer patients. We have designed and implemented software tools to automate the data analysis from genotypes to lists of candidate genes and to their properties. The programs have been designed in respect to a pipeline architecture that allows their integration to other programs such as biological databases and copy number analysis tools. The integration of the tools is crucial as the genome wide analysis of the cohort differences produces many candidate regions not related to the studied phenotype. CohortComparator is a genotype comparison tool that detects homozygous regions and compares their loci and allele constitutions between two sets of samples. The data is visualised in chromosome specific graphs illustrating the homozygous regions and alleles of each sample. The genomic regions that may harbour recessive mutations are emphasised with different colours and a scoring scheme is given for these regions. The detection of homozygous regions, cohort comparisons and result annotations are all subjected to presumptions many of which have been parameterized in our programs. The effect of these parameters and the suitable scope of the methods have been evaluated. Samples with different resolutions can be balanced with the genotype estimates of their haplotypes and they can be used within the same study.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Various endogenous and exogenous factors have been reported to increase the risk of breast cancer. Many of those are related to prolonged lifetime exposure to estrogens. Furthermore, a positive family history of breast cancer and certain benign breast diseases are known to increase the risk of breast cancer. The role of lifestyle factors, such as use of alcohol and smoking has been an area of intensive study. Alcohol has been found to increase the risk of breast cancer, whereas the role of smoking has remained obscure. A multitude of enzymes are involved in the metabolism of estrogens and xenobiotics including the carcinogens found in tobacco smoke. Many of the metabolic enzymes exhibit genetic polymorphisms that can lead to inter-individual differences in their abilities to modify hazardous substrates. Therefore, in presence of a given chemical exposure, one subgroup of women may be more susceptible to breast carcinogenesis, since they carry unfavourable forms of the polymorphic genes involved in the metabolism of the chemical. In this work, polymorphic genes encoding for cytochrome P450 (CYP) 1A1 and 1B1, N-acetyl transferase 2 (NAT2), sulfotransferase 1A1 (SULT1A1), manganese superoxide dismutase (MnSOD) and vitamin D receptor (VDR) were investigated in relation to breast cancer susceptibility in a Finnish population. CYP1A1, CYP1B1 and SULT1A1 are involved in the metabolism of both estrogens and xenobiotics, whereas NAT2 is involved only in the latter. MnSOD is an antioxidant enzyme protecting cells from oxidative damage. VDR, in turn, mediates the effects of the active form of vitamin D (1,25(OH)2D3, calcitriol) on maintenance of calcium homeostasis and it has anti-proliferative effects in many cancer cells. A 1.3-fold (95% CIs 1.01-1.73) increased risk of breast cancer was seen among women who carried the NAT2 slow acetylator genotype and a 1.5-fold (95% CI 1.1-2.0) risk was found in women with a MnSOD variant A allele containing genotypes compared to women with the NAT2 rapid acetylator genotype or to those with the MnSOD VV genotype, respectively. Instead, women with the VDR a allele containing genotypes were found to be at a decreased risk for breast cancer (OR 0.73; 95% CI 0.54-0.98) compared to women with the AA genotype. No significant overall associations were found between SULT1A1 or CYP genotypes and breast cancer risk, whereas a combination of the CYP1B1 432Val allele containing genotypes with the NAT2 slow acetylator genotypes posed a 1.5-fold (95% CI 1.03-2.24) increased risk. Moreover, NAT2 slow acetylator genotype was found to be confined to women with an advanced stage of breast cancer (stages III and IV). Further evidence for the association of xenobiotic metabolising genes with breast cancer risk was found when active smoking was taken into account. Women who smoked less than 10 cigarettes/day and carried at least one CYP1B1 432Val variant allele, were at 3.1-fold (95% CI 1.32-7.12) risk of breast cancer compared to women who smoked the same amount but did not carry the variant allele. Furthermore, the risk was significantly increased with increasing number of the CYP1B1 432Val alleles (p for trend 0.005). In addition, women who smoked less than 5 pack-years and carried the NAT2 slow acetylator genotype were at a 2.6-fold (95% CI 1.01-6.48) increased risk of breast cancer compared to women who smoked the same amount but carried the NAT2 rapid acetylator genotype. Furthermore, the combination of the CYP1B1 432Val allele and the NAT2 slow acetylator genotype increased the risk of breast cancer by 2.5-fold (95% CI 1.11-5.45) among ever smokers. Instead, the MnSOD A allele was found to be a risk factor among postmenopausal long-term smokers (>15 years of smoking) (OR 5.1; 95% CI 1.4-18.4) or among postmenopausal women who had smoked more than 10 cigarettes/day (OR 5.5; 95% CI 1.3-23.4) compared to women who had similar smoking habits but carried the MnSOD V/V genotype. Similarly, within subgroups of postmenopausal women who were using oral contraceptives, hormone replacement therapy or alcohol, women carrying the MnSOD A allele genotypes seemed to be at increased risk of breast cancer compared to women with the MnSOD V/V genotype. A positive family history of breast cancer and high parity were shown to be inversely associated with breast cancer risk among women carrying the VDR ApaI a allele or among premenopausal women carrying the SULT1A1*2 allele, respectively.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Asbestos is a well known cancer-causing mineral fibre, which has a synergistic effect on lung cancer risk in combination with tobacco smoking. Several in vitro and in vivo experiments have demonstrated that asbestos can evoke chromosomal damage and cause alterations as well as gene expression changes. Lung tumours, in general, have very complex karyotypes with several recurrently gained and lost chromosomal regions and this has made it difficult to identify specific molecular changes related primarily to asbestos exposure. The main aim of these studies has been to characterize asbestos-related lung cancer at a molecular level. Methods: Samples from asbestos-exposed and non-exposed lung cancer patients were studied using array comparative genomic hybridization (aCGH) and fluorescent in situ hybridization (FISH) to detect copy number alterations (CNA) as well as microsatellite analysis to detect allelic imbalance (AI). In addition, asbestos-exposed cell lines were studied using gene expression microarrays. Results: Eighteen chromosomal regions showing differential copy number in the lung tumours of asbestos-exposed patients compared to those of non-exposed patients were identified. The most significant differences were detected at 2p21-p16.3, 5q35.3, 9q33.3-q34.11, 9q34.13-q34.3, 11p15.5, 14q11.2 and 19p13.1-p13.3 (p<0.005). The alterations at 2p and 9q were validated and characterized in detail using AI and FISH analysis in a larger study population. Furthermore, in vitro studies were performed to examine the early gene expression changes induced by asbestos in three different lung cell lines. The results revealed specific asbestos-associated gene expression profiles and biological processes as well as chromosomal regions enriched with genes believed to contribute to the common asbestos-related responses in the cell lines. Interestingly, the most significant region enriched with asbestos-response genes was identified at 2p22, close to the previously identified region showing asbestos-related CNA in lung tumours. Additionally, in this thesis, the dysregulated biological processes (Gene Ontology terms) detected in the cell line experiment were compared to dysregulated processes identified in patient samples in a later study (Ruosaari et al., 2008a). Commonly affected processes such as those related to protein ubiquitination, ion transport and surprisingly sensory perception of smell were identified. Conclusions: The identification of specific CNA and dysregulated biological processes shed some light on the underlying genes acting as mediators in asbestos-related lung carcinogenesis. It is postulated that the combination of several asbestos-specific molecular alterations could be used to develop a diagnostic method for the identification of asbestos-related lung cancer.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cancer is a leading cause of death worldwide and the total number of cancer cases continues to increase. Many cancers, for example sinonasal cancer and lung cancer, have clear external risk factors and so are potentially preventable. The occurrence of sinonasal cancer is strongly associated with wood dust exposure and the main risk factor for lung cancer is tobacco smoking. Although the molecular mechanisms involved in lung carcinogenesis have been widely studied, very little is known about the molecular changes leading to sinonasal cancer. In this work, mutations in the tumour suppressor TP53 gene in cases of sinonasal cancer and lung cancer and the associations of these mutations with exposure factors were studied. In addition, another important mechanism in many cancers, inflammation, was explored by analyzing the expression of the inflammation related enzyme, COX-2, in sinonasal cancer. The results demonstrate that TP53 mutations are frequent in sinonasal cancer and lung cancer and in both cancers they are associated with exposure. In sinonasal cancer, the occurrence of TP53 mutation significantly increased in relation to long duration and high level of exposure to wood dust. Smoking was not associated with the overall occurrence of the TP53 mutation in sinonasal cancer, but was associated with multiple TP53 mutations. Furthermore, inflammation appears to play a part in sinonasal carcinogenesis as indicated by our results showing that the expression of COX-2 was associated with adenocarcinoma type of tumours, wood dust exposure and non-smoking. In lung cancer, we detected statistically significant associations between TP53 mutations and duration of smoking, gender and histology. We also found that patients with a tumour carrying a G to T transversion, a mutation commonly found in association with tobacco smoking, had a high level of smoking-related bulky DNA adducts in their non-tumorous lung tissue. Altogether, the information on molecular changes in exposure induced cancers adds to the observations from epidemiological studies and helps to understand the role and impact of different etiological factors, which in turn can be beneficial for risk assessment and prevention.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thirty percent of 70-year-old women have osteoporosis; after age of 80 its prevalence is up to 70%. Postmenopausal women with osteoporosis seem to be at an increased risk for cardiovascular events, and deterioration of oral health, as shown by attachment loss of teeth, which is proportional to the severity of osteoporosis. Osteoporosis can be treated with many different medication, e.g. estrogen and alendronate. We randomized 90 elderly osteoporotic women (65-80 years of age) to receive hormone therapy (HT)(2mg E2+NETA), 10mg alendronate, and their combination for two years and compared their effects on bone mineral density (BMD) and turnover, two surrogate markers of the risk of cardiovascular diseases, C-reactive protein (CRP) and E-selectin, as well as oral health. The effect of HT on health-related quality of life (HRQoL) was studied in the population-based cohort of 1663 postmenopausal women (mean age 68 yr) (585 estrogen users and 1078 non-users). BMD was measured with dual-energy X-ray absorptiometry (DXA) at 0, 12 and 24 months. Urinary N-telopeptide (NTX) of type I collagen, a marker of bone resorption, and serum aminoterminal propeptide of human type I procollagen (PINP), a marker of bone formation, were measured every six months of treatment. Serum CRP and E-selectin, were measured at 0, 6, and 12 months. Dental, and periodontal conditions, and gingival crevicular fluid (GCF) matrix metalloproteinase (MMP)-8 levels were studied to evaluate the oral health status and for the mouth symptoms a structured questionnaire was used. The HRQoL was measured with 15D questionnaire. Lumbar spine BMD increased similarly in all treatment groups (6.8-8.4% and 9.1-11.2%). Only HT increased femoral neck BMD at both 12 (4.9%) and 24 months (5.8%), at the latter time point the HT group differed significantly from the other groups. HT reduced bone marker levels of NTX and PINP significantly less than other two groups.Oral HT significantly increased serum CRP level by 76.5% at 6 and by 47.1% (NS) at 12 months, and decreased serum E-selectin level by 24.3% and 30.0%. Alendronate had no effect on these surrogate markers. Alendronate caused a decrease in the resting salivary flow rate and tended to increase GCF MMP-8 levels. Otherwise, there was no effect on the parameters of oral health. HT improved the HRQoL of elderly women significantly on the dimensions of usual activities, vitality and sexual activity, but the overall improvement in HRQoL was neither statistically significant nor clinically important. In conclusion, bisphosphonates might be the first option to start the treatment of postmenopausal osteoporosis in the old age.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Breast cancer is the most commonly occurring cancer among women, and its incidence is increasing worldwide. Positive family history is a well established risk factor for breast cancer, and it is suggested that the proportion of breast cancer that can be attributed to genetic factors may be as high as 30%. However, all the currently known breast cancer susceptibility genes are estimated to account for 20-30% of familial breast cancer, and only 5% of the total breast cancer incidence. It is thus likely that there are still other breast cancer susceptibility genes to be found. Cellular responses to DNA damage are crucial for maintaining genomic integrity and preventing the development of cancer. The genes operating in DNA damage response signaling network are thus good candidates for breast cancer susceptibility genes. The aim of this study was to evaluate the role of three DNA damage response associated genes, ATM, RAD50, and p53, in breast cancer. ATM, a gene causative for ataxia telangiectasia (A-T), has long been a strong candidate for a breast cancer susceptibility gene because of its function as a key DNA damage signal transducer. We analyzed the prevalence of known Finnish A-T related ATM mutations in large series of familial and unselected breast cancer cases from different geographical regions in Finland. Of the seven A-T related mutations, two were observed in the studied familial breast cancer patients. Additionally, a third mutation previously associated with breast cancer susceptibility was also detected. These founder mutations may be responsible for excess familial breast cancer regionally in Northern and Central Finland, but in Southern Finland our results suggest only a minor effect, if any, of any ATM genetic variants on familial breast cancer. We also screened the entire coding region of the ATM gene in 47 familial breast cancer patients from Southern Finland, and evaluated the identified variants in additional cases and controls. All the identified variants were too rare to significantly contribute to breast cancer susceptibility. However, the role of ATM in cancer development and progression was supported by the results of the immunohistochemical studies of ATM expression, as reduced ATM expression in breast carcinomas was found to correlate with tumor differentiation and hormone receptor status. Aberrant ATM expression was also a feature shared by the BRCA1/2 and the difficult-to-treat ER/PR/ERBB2-triple-negative breast carcinomas. From the clinical point of view, identification of phenotypic and genetic similarities between the BRCA1/2 and the triple-negative breast tumors could have an implication in designing novel targeted therapies to which both of these classes of breast cancer might be exceptionally sensitive. Mutations of another plausible breast cancer susceptibility gene, RAD50, were found to be very rare, and RAD50 can only be making a minor contribution to familial breast cancer predisposition in UK and Southern Finland. The Finnish founder mutation RAD50 687delT seems to be a null allele and may carry a small increased risk of breast cancer. RAD50 is not acting as a classical tumor suppressor gene, but it is possible that RAD50 haploinsufficiency is contributing to cancer. In addition to relatively rare breast cancer susceptibility alleles, common polymorphisms may also be associated with increased breast cancer risk. Furthermore, these polymorphisms may have an impact on the progression and outcome of the disease. Our results suggest no effect of the common p53 R72P polymorphism on familial breast cancer risk or breast cancer risk in the population, but R72P seems to be associated with histopathologic features of the tumors and survival of the patients; 72P homozygous genotype was an independent prognostic factor among the unselected breast cancer patients, with a two-fold increased risk of death. These results present important novel findings also with clinical significance, as codon 72 genotype could be a useful additional prognostic marker in breast cancer, especially among the subgroup of patients with wild-type p53 in their tumors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Breast cancer is the most common malignancy in women in Western countries. It is a heterogeneous disease with varying biological characteristics and aggressiveness. Family history is one of the strongest predisposing factors for breast cancer. The known susceptibility genes explain only around 25% of all familial breast cancers. At least part of the unknown familial aggregation may be caused by several low-penetrance variants that occur commonly in the general population. Cyclins are cell cycle-regulating proteins. Cyclin expression oscillates during the cell cycle and is under strict control. In cancer cells, cyclin expression often becomes deregulated, leading to uncontrolled cell division and proliferation, one of the hallmarks of cancer. In this study, we investigated the role of cyclins in breast cancer predisposition, pathogenesis, and tumor behavior. Cyclin A immunohistochemistry was evaluated both on traditional large sections and on tissue microarrays (TMA). The concordance of the results was good, indicating that TMA is a reliable method for studying cyclin expression in breast cancer. The expression of cyclins D1, E, and B1 was studied among 1348 invasive breast cancers on TMA. Familial BRCA1/2-mutation negative tumors had significantly more often low cyclin E and high cyclin D1 expression than BRCA1/2 related or sporadic tumors. Unique cyclin E and D1 expression patterns among familial non-BRCA1/2 breast cancers may reflect different predisposition and pathogenesis in these groups and help to differentiate mutation-positive from mutation-negative familial cancers. High cyclin E expression was associated with an aggressive breast cancer phenotype and was an independent marker of poor metastasis-free survival. High cyclin D1 was associated with high grade and high proliferation among estrogen receptor (ER)-positive but with low grade and low proliferation among ER-negative breast cancers. Among ER-positive cancers not treated with chemotherapy, high cyclin D1 showed a trend towards shorter metastasis-free survival. These results suggest that different mechanisms may drive proliferation in ER-negative and -positive breast cancers and that cyclin D1 has a particularly important role in tumorigenesis of hormone receptor-positive breast cancer. High cyclin B1 expression was associated with aggressive breast cancer features and had an independent impact on survival. The results suggest that cyclin B1 immunohistochemistry is a method that could easily be adapted for routine use and is an independent prognostic factor, adding specificity to prognostic evaluation conducted with traditional markers. A commonly occurring cyclin D1 gene polymorphism A870G was associated with increased breast cancer risk in a large material of Finnish and Canadian breast cancer patients. The interaction of the high-activity alleles of cyclin D1 gene and estrogen metabolism gene COMT conferred an even higher risk. These results show that cyclin D1 and COMT act synergistically to contribute to breast cancer progression and that individual risk for breast cancer can be altered by the combined effect of polymorphisms with low-penetrance alleles. By investigating critical cell cycle regulator protein cyclins, we revealed new aspects of breast cancer predisposition, pathogenesis, and clinical course.