8 resultados para Hinge-bending Motion

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of recovering information from measurement data has already been studied for a long time. In the beginning, the methods were mostly empirical, but already towards the end of the sixties Backus and Gilbert started the development of mathematical methods for the interpretation of geophysical data. The problem of recovering information about a physical phenomenon from measurement data is an inverse problem. Throughout this work, the statistical inversion method is used to obtain a solution. Assuming that the measurement vector is a realization of fractional Brownian motion, the goal is to retrieve the amplitude and the Hurst parameter. We prove that under some conditions, the solution of the discretized problem coincides with the solution of the corresponding continuous problem as the number of observations tends to infinity. The measurement data is usually noisy, and we assume the data to be the sum of two vectors: the trend and the noise. Both vectors are supposed to be realizations of fractional Brownian motions, and the goal is to retrieve their parameters using the statistical inversion method. We prove a partial uniqueness of the solution. Moreover, with the support of numerical simulations, we show that in certain cases the solution is reliable and the reconstruction of the trend vector is quite accurate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasma membrane adopts myriad of different shapes to carry out essential cellular processes such as nutrient uptake, immunological defence mechanisms and cell migration. Therefore, the details how different plasma membrane structures are made and remodelled are of the upmost importance. Bending of plasma membrane into different shapes requires substantial amount of force, which can be provided by the actin cytoskeleton, however, the molecules that regulate the interplay between the actin cytoskeleton and plasma membrane have remained elusive. Recent findings have placed new types of effectors at sites of plasma membrane remodelling, including BAR proteins, which can directly bind and deform plasma membrane into different shapes. In addition to their membrane-bending abilities, BAR proteins also harbor protein domains that intimately link them to the actin cytoskeleton. The ancient BAR domain fold has evolved into at least three structurally and functionally different sub-groups: the BAR, F-BAR and I-BAR domains. This thesis work describes the discovery and functional characterization of the Inverse-BAR domains (I-BARs). Using synthetic model membranes, we have shown that I-BAR domains bind and deform membranes into tubular structures through a binding-surface composed of positively charged amino acids. Importantly, the membrane-binding surface of I-BAR domains displays an inverse geometry to that of the BAR and F-BAR domains, and these structural differences explain why I-BAR domains induce cell protrusions whereas BAR and most F-BAR domains induce cell invaginations. In addition, our results indicate that the binding of I-BAR domains to membranes can alter the spatial organization of phosphoinositides within membranes. Intriguingly, we also found that some I-BAR domains can insert helical motifs into the membrane bilayer, which has important consequences for their membrane binding/bending functions. In mammals there are five I-BAR domain containing proteins. Cell biological studies on ABBA revealed that it is highly expressed in radial glial cells during the development of the central nervous system and plays an important role in the extension process of radial glia-like C6R cells by regulating lamellipodial dynamics through its I-BAR domain. To reveal the role of these proteins in the context of animals, we analyzed MIM knockout mice and found that MIM is required for proper renal functions in adult mice. MIM deficient mice displayed a severe urine concentration defect due to defective intercellular junctions of the kidney epithelia. Consistently, MIM localized to adherens junctions in cultured kidney epithelial cells, where it promoted actin assembly through its I-BAR andWH2 domains. In summary, this thesis describes the mechanism how I-BAR proteins deform membranes and provides information about the biological role of these proteins, which to our knowledge are the first proteins that have been shown to directly deform plasma membrane to make cell protrusions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The wave functions of moving bound states may be expected to contract in the direction of motion, in analogy to a rigid rod in classical special relativity, when the constituents are at equal (ordinary) time. Indeed, the Lorentz contraction of wave functions is often appealed to in qualitative discussions. However, only few field theory studies exist of equal-time wave functions in motion. In this thesis I use the Bethe-Salpeter formalism to study the wave function of a weakly bound state such as a hydrogen atom or positronium in a general frame. The wave function of the e^-e^+ component of positronium indeed turns out to Lorentz contract both in 1+1 and in 3+1 dimensional quantum electrodynamics, whereas the next-to-leading e^-e^+\gamma Fock component of the 3+1 dimensional theory deviates from classical contraction. The second topic of this thesis concerns single spin asymmetries measured in scattering on polarized bound states. Such spin asymmetries have so far mainly been analyzed using the twist expansion of perturbative QCD. I note that QCD vacuum effects may give rise to a helicity flip in the soft rescattering of the struck quark, and that this would cause a nonvanishing spin asymmetry in \ell p^\uparrow -> \ell' + \pi + X in the Bjorken limit. An analogous asymmetry may arise in p p^\uparrow -> \pi + X from Pomeron-Odderon interference, if the Odderon has a helicity-flip coupling. Finally, I study the possibility that the large single spin asymmetry observed in p p^\uparrow -> \pi(x_F,k_\perp) + X when the pion carries a high momentum fraction x_F of the polarized proton momentum arises from coherent effects involving the entire polarized bound state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this dissertation we study the interaction between Saturn's moon Titan and the magnetospheric plasma and magnetic field. The method of research is a three-dimensional computer simulation model, that is used to simulate this interaction. The simulation model used is a hybrid model. Hybrid models enable individual tracking or tracing of ions and also take into account the particle motion in the propagation of the electromagnetic fields. The hybrid model has been developed at the Finnish Meteorological Institute. This thesis gives a general description of the effects that the solar wind has on Earth and other planets of our solar system. Planetary satellites can also have similar interactions with the solar wind but also with the plasma flows of planetary magnetospheres. Titan is clearly the largest among the satellites of Saturn and also the only known satellite with a dense atmosphere. It is the atmosphere that makes Titan's plasma interaction with the magnetosphere of Saturn so unique. Nevertheless, comparisons with the plasma interactions of other solar system bodies are valuable. Detecting charged plasma particles requires in situ measurements obtainable through scientific spacecraft. The Cassini mission has been one of the most remarkable international efforts in space science. Since 2004 the measurements and images obtained from instruments onboard the Cassini spacecraft have increased the scientific knowledge of Saturn as well as its satellites and magnetosphere in a way no one was probably able to predict. The current level of science on Titan is practically unthinkable without the Cassini mission. Many of the observations by Cassini instrument teams have influenced this research both the direct measurements of Titan as well as observations of its plasma environment. The theoretical principles of the hybrid modelling approach are presented in connection to the broader context of plasma simulations. The developed hybrid model is described in detail: e.g. the way the equations of the hybrid model are solved is shown explicitly. Several simulation techniques, such as the grid structure and various boundary conditions, are discussed in detail as well. The testing and monitoring of simulation runs is presented as an essential routine when running sophisticated and complex models. Several significant improvements of the model, that are in preparation, are also discussed. A main part of this dissertation are four scientific articles based on the results of the Titan model. The Titan model developed during the course of the Ph.D. research has been shown to be an important tool to understand Titan's plasma interaction. One reason for this is that the structures of the magnetic field around Titan are very much three-dimensional. The simulation results give a general picture of the magnetic fields in the vicinity of Titan. The magnetic fine structure of Titan's wake as seen in the simulations seems connected to Alfvén waves an important wave mode in space plasmas. The particle escape from Titan is also a major part of these studies. Our simulations show a bending or turning of Titan's ionotail that we have shown to be a direct result of the basic principles in plasma physics. Furthermore, the ion flux from the magnetosphere of Saturn into Titan's upper atmosphere has been studied. The modelled ion flux has asymmetries that would likely have a large impact in the heating in different parts of Titan's upper atmosphere.