18 resultados para Hardware Transactional Memory
em Helda - Digital Repository of University of Helsinki
Resumo:
Acute encephalitis is an inflammation of the brain, mostly caused by viral infection. A variety of cognitive symptoms may persist after the acute stage, and neuropsychological assessment is crucial in evaluation of the outcome. The most commonly reported sequelae are memory deficits. The main aims of this study were to investigate the types of memory impairment in various encephalitides, the frequency of global amnesia following encephalitis, and the changes in the deficits during follow-up. Between 1 January 1985 and 31 December 1994, 77 adult patients under the age of 75 with acute encephalitis but without alcohol abuse, or coexisting or previous neurological diseases were consecutively referred for neuropsychological examination at the Department of Neurology, Helsinki University Central Hospital. The aetiology was established in 44/77 (57%) patients; 17 had Herpes simplex virus encephalitis (HSVE). Transient amnesia (TENA) at the acute stage of the disease was found in 70% of patients. Furthermore, similarly to brain trauma, TENA was found to indicate cognitive outcome. The frequency of persisting global amnesia syndrome with both anterograde and retrograde amnesia in all encephalitic patients was 6%. One patient had isolated retrograde amnesia, which is very rare. In HSVE the frequency of global amnesia was 12.5%, which is lower than expected. As a group, HSVE patients were not found to have a homogeneous pattern of amnesia, instead subgroups among all encephalitic patients were observed: some patients had impaired semantic memory, some had difficulty predominantly with executive functions and some suffered from an increased forgetting rate. Herpes zoster encephalitis was found to result in mild memory impairment only, and the qualitative features indicated a subcortical dysfunction. On the whole, the cognitive deficits were predominantly found to diminish during follow-up. Progressive deterioration was often associated with intractable epilepsy. The frequency of dementia was 12.5%. In conclusion, the neuropsychological outcome, especially in HSVE, was more favourable than has previously been reported, possibly due to early acyclovir medication. Memory disorders after encephalitis should not be considered uniform, and the need for neuropsychological rehabilitation should be considered case-by-case
Resumo:
Distraction in the workplace is increasingly more common in the information age. Several tasks and sources of information compete for a worker's limited cognitive capacities in human-computer interaction (HCI). In some situations even very brief interruptions can have detrimental effects on memory. Nevertheless, in other situations where persons are continuously interrupted, virtually no interruption costs emerge. This dissertation attempts to reveal the mental conditions and causalities differentiating the two outcomes. The explanation, building on the theory of long-term working memory (LTWM; Ericsson and Kintsch, 1995), focuses on the active, skillful aspects of human cognition that enable the storage of task information beyond the temporary and unstable storage provided by short-term working memory (STWM). Its key postulate is called a retrieval structure an abstract, hierarchical knowledge representation built into long-term memory that can be utilized to encode, update, and retrieve products of cognitive processes carried out during skilled task performance. If certain criteria of practice and task processing are met, LTWM allows for the storage of large representations for long time periods, yet these representations can be accessed with the accuracy, reliability, and speed typical of STWM. The main thesis of the dissertation is that the ability to endure interruptions depends on the efficiency in which LTWM can be recruited for maintaing information. An observational study and a field experiment provide ecological evidence for this thesis. Mobile users were found to be able to carry out heavy interleaving and sequencing of tasks while interacting, and they exhibited several intricate time-sharing strategies to orchestrate interruptions in a way sensitive to both external and internal demands. Interruptions are inevitable, because they arise as natural consequences of the top-down and bottom-up control of multitasking. In this process the function of LTWM is to keep some representations ready for reactivation and others in a more passive state to prevent interference. The psychological reality of the main thesis received confirmatory evidence in a series of laboratory experiments. They indicate that after encoding into LTWM, task representations are safeguarded from interruptions, regardless of their intensity, complexity, or pacing. However, when LTWM cannot be deployed, the problems posed by interference in long-term memory and the limited capacity of the STWM surface. A major contribution of the dissertation is the analysis of when users must resort to poorer maintenance strategies, like temporal cues and STWM-based rehearsal. First, one experiment showed that task orientations can be associated with radically different patterns of retrieval cue encodings. Thus the nature of the processing of the interface determines which features will be available as retrieval cues and which must be maintained by other means. In another study it was demonstrated that if the speed of encoding into LTWM, a skill-dependent parameter, is slower than the processing speed allowed for by the task, interruption costs emerge. Contrary to the predictions of competing theories, these costs turned out to involve intrusions in addition to omissions. Finally, it was learned that in rapid visually oriented interaction, perceptual-procedural expectations guide task resumption, and neither STWM nor LTWM are utilized due to the fact that access is too slow. These findings imply a change in thinking about the design of interfaces. Several novel principles of design are presented, basing on the idea of supporting the deployment of LTWM in the main task.
Resumo:
Neuronal oscillations are thought to underlie interactions between distinct brain regions required for normal memory functioning. This study aimed at elucidating the neuronal basis of memory abnormalities in neurodegenerative disorders. Magnetoencephalography (MEG) was used to measure oscillatory brain signals in patients with Alzheimer s disease (AD), a neurodegenerative disease causing progressive cognitive decline, and mild cognitive impairment (MCI), a disorder characterized by mild but clinically significant complaints of memory loss without apparent impairment in other cognitive domains. Furthermore, to help interpret our AD/MCI results and to develop more powerful oscillatory MEG paradigms for clinical memory studies, oscillatory neuronal activity underlying declarative memory, the function which is afflicted first in both AD and MCI, was investigated in a group of healthy subjects. An increased temporal-lobe contribution coinciding with parieto-occipital deficits in oscillatory activity was observed in AD patients: sources in the 6 12.5 Hz range were significantly stronger in the parieto-occipital and significantly weaker in the right temporal region in AD patients, as compared to MCI patients and healthy elderly subjects. Further, the auditory steady-state response, thought to represent both evoked and induced activity, was enhanced in AD patients, as compared to controls, possibly reflecting decreased inhibition in auditory processing and deficits in adaptation to repetitive stimulation with low relevance. Finally, the methodological study revealed that successful declarative encoding and retrieval is associated with increases in occipital gamma and right hemisphere theta power in healthy unmedicated subjects. This result suggests that investigation of neuronal oscillations during cognitive performance could potentially be used to investigate declarative memory deficits in AD patients. Taken together, the present results provide an insight on the role of brain oscillatory activity in memory function and memory disorders.
Resumo:
Studying the continuity and underlying mechanisms of temperament change from early childhood through adulthood is clinically and theoretically relevant. Knowledge of the continuity and change of temperament from infancy onwards, especially as perceived by both parents is, however, still scanty. Only in recent years have researchers become aware that personality, long considered as stable in adulthood, may also change. Further, studies that focus on the transactional change of child temperament and parental personality also seem to be lacking, as are studies focusing on transactions between child temperament and more transient parental characteristics, like parental stress. Therefore, this longitudinal study examined the degree of continuity of temperament over five years from the infant s age of six months to the child s age of five and a half years, as perceived by both biological parents, and also investigated the bidirectional effects between child temperament and parents personality traits and overall stress experienced during that time. First, moderate to high levels of continuity of temperament from infancy to middle childhood were shown, depicting the developmental links between affectively positive and well-adjusted temperament characteristics, and between characteristics of early and later negative affectivity. The continuity of temperament was quantitatively and qualitatively similar in both parents ratings. The findings also demonstrate that infant and childhood temperament characteristics cluster to form stable temperament types that resemble personality types shown in child and adult personality studies. Second, the parental personality traits of extraversion and neuroticism were shown to be highly stable over five years, but evidence of change in relation to parents views of their child s temperament was also shown: an infant s higher positive affectivity predicted an increase in parental extraversion, while the infant s higher activity level predicted a decrease in parental neuroticism over five years. Furthermore, initially higher parental extraversion predicted higher ratings of the child s effortful control, while initially higher parental neuroticism predicted the child s higher negative affectivity. In terms of changes in parental stress, the infant s higher activity level predicted a decrease in maternal overall stress, while initially higher maternal stress predicted a higher level of child negative affectivity in middle childhood. Together, the results demonstrate that the mother- and father-rated temperament of the child shows continuity during the early years of life, but also support the view that the development of these characteristics is sensitive to important contextual factors such as parental personality and overall stress. While parental personality and experienced stress were shown to have an effect on the child s developing temperament, the reverse was also true: the parents own personality traits and perceived stress seemed to be highly stable, but also susceptible to their experiences of their child s temperament.
Resumo:
This thesis examines brain networks involved in auditory attention and auditory working memory using measures of task performance, brain activity, and neuroanatomical connectivity. Auditory orienting and maintenance of attention were compared with visual orienting and maintenance of attention, and top-down controlled attention was compared to bottom-up triggered attention in audition. Moreover, the effects of cognitive load on performance and brain activity were studied using an auditory working memory task. Corbetta and Shulman s (2002) model of visual attention suggests that what is known as the dorsal attention system (intraparietal sulcus/superior parietal lobule, IPS/SPL and frontal eye field, FEF) is involved in the control of top-down controlled attention, whereas what is known as the ventral attention system (temporo-parietal junction, TPJ and areas of the inferior/middle frontal gyrus, IFG/MFG) is involved in bottom-up triggered attention. The present results show that top-down controlled auditory attention also activates IPS/SPL and FEF. Furthermore, in audition, TPJ and IFG/MFG were activated not only by bottom-up triggered attention, but also by top-down controlled attention. In addition, the posterior cerebellum and thalamus were activated by top-down controlled attention shifts and the ventromedial prefrontal cortex (VMPFC) was activated by to-be-ignored, but attention-catching salient changes in auditory input streams. VMPFC may be involved in the evaluation of environmental events causing the bottom-up triggered engagement of attention. Auditory working memory activated a brain network that largely overlapped with the one activated by top-down controlled attention. The present results also provide further evidence of the role of the cerebellum in cognitive processing: During auditory working memory tasks, both activity in the posterior cerebellum (the crus I/II) and reaction speed increased when the cognitive load increased. Based on the present results and earlier theories on the role of the cerebellum in cognitive processing, the function of the posterior cerebellum in cognitive tasks may be related to the optimization of response speed.
Resumo:
Intact function of working memory (WM) is essential for children and adults to cope with every day life. Children with deficits in WM mechanisms have learning difficulties that are often accompanied by behavioral problems. The neural processes subserving WM, and brain structures underlying this system, continue to develop during childhood till adolescence and young adulthood. With functional magnetic resonance imaging (fMRI) it is possible to investigate the organization and development of WM. The present thesis aimed to investigate, using behavioral and neuroimaging methods, whether mnemonic processing of spatial and nonspatial visual information is segregated in the developing and mature human brain. A further aim in this research was to investigate the organization and development of audiospatial and visuospatial information processing in WM. The behavioral results showed that spatial and nonspatial visual WM processing is segregated in the adult brain. The fMRI result in children suggested that memory load related processing of spatial and nonspatial visual information engages common cortical networks, whereas selective attention to either type of stimuli recruits partially segregated areas in the frontal, parietal and occipital cortices. Deactivation mechanisms that are important in the performance of WM tasks in adults are already operational in healthy school-aged children. Electrophysiological evidence suggested segregated mnemonic processing of visual and auditory location information. The results of the development of audiospatial and visuospatial WM demonstrate that WM performance improves with age, suggesting functional maturation of underlying cognitive processes and brain areas. The development of the performance of spatial WM tasks follows a different time course in boys and girls indicating a larger degree of immaturity in the male than female WM systems. Furthermore, the differences in mastering auditory and visual WM tasks may indicate that visual WM reaches functional maturity earlier than the corresponding auditory system. Spatial WM deficits may underlie some learning difficulties and behavioral problems related to impulsivity, difficulties in concentration, and hyperactivity. Alternatively, anxiety or depressive symptoms may affect WM function and the ability to concentrate, being thus the primary cause of poor academic achievement in children.
Resumo:
Sensor networks represent an attractive tool to observe the physical world. Networks of tiny sensors can be used to detect a fire in a forest, to monitor the level of pollution in a river, or to check on the structural integrity of a bridge. Application-specific deployments of static-sensor networks have been widely investigated. Commonly, these networks involve a centralized data-collection point and no sharing of data outside the organization that owns it. Although this approach can accommodate many application scenarios, it significantly deviates from the pervasive computing vision of ubiquitous sensing where user applications seamlessly access anytime, anywhere data produced by sensors embedded in the surroundings. With the ubiquity and ever-increasing capabilities of mobile devices, urban environments can help give substance to the ubiquitous sensing vision through Urbanets, spontaneously created urban networks. Urbanets consist of mobile multi-sensor devices, such as smart phones and vehicular systems, public sensor networks deployed by municipalities, and individual sensors incorporated in buildings, roads, or daily artifacts. My thesis is that "multi-sensor mobile devices can be successfully programmed to become the underpinning elements of an open, infrastructure-less, distributed sensing platform that can bring sensor data out of their traditional close-loop networks into everyday urban applications". Urbanets can support a variety of services ranging from emergency and surveillance to tourist guidance and entertainment. For instance, cars can be used to provide traffic information services to alert drivers to upcoming traffic jams, and phones to provide shopping recommender services to inform users of special offers at the mall. Urbanets cannot be programmed using traditional distributed computing models, which assume underlying networks with functionally homogeneous nodes, stable configurations, and known delays. Conversely, Urbanets have functionally heterogeneous nodes, volatile configurations, and unknown delays. Instead, solutions developed for sensor networks and mobile ad hoc networks can be leveraged to provide novel architectures that address Urbanet-specific requirements, while providing useful abstractions that hide the network complexity from the programmer. This dissertation presents two middleware architectures that can support mobile sensing applications in Urbanets. Contory offers a declarative programming model that views Urbanets as a distributed sensor database and exposes an SQL-like interface to developers. Context-aware Migratory Services provides a client-server paradigm, where services are capable of migrating to different nodes in the network in order to maintain a continuous and semantically correct interaction with clients. Compared to previous approaches to supporting mobile sensing urban applications, our architectures are entirely distributed and do not assume constant availability of Internet connectivity. In addition, they allow on-demand collection of sensor data with the accuracy and at the frequency required by every application. These architectures have been implemented in Java and tested on smart phones. They have proved successful in supporting several prototype applications and experimental results obtained in ad hoc networks of phones have demonstrated their feasibility with reasonable performance in terms of latency, memory, and energy consumption.
Resumo:
Viime aikoina yleistyneet flash-muistiin perustuvat tallennusvälineet ovat monessa suhteessa kiintolevyä parempia. Flash-muistissa on kuitenkin useita erityispiirteitä, jotka vaikeuttavat sen käyttöönottoa tietokantajärjestelmässä. Flash-muistissa kirjoittaminen on hitaampaa kuin lukeminen. Erityisesti hajanaisten sivujen päivittäminen on hidasta. Hajaluku flash-muistista on huomattavasti nopeampaa kuin kiintolevyltä. Näiden erityispiirteiden vuoksi tietokannan hallintajärjestelmä on optimoitava erikseen flash-muistia varten. Tässä optimoinnissa lähes kaikki tietokannan hallintajärjestelmän osa-alueet on toteutettava uudelleen flash-muistin näkökulmasta. Flash-muistin nopean hajaluvun ansiosta relaatioiden tiedot voidaan sijoitella flash-muistiin vapaammin kuin kiintolevylle. Yleisin tietokannoissa käytetty hakemistorakenne B+-puu ei toimi tehokkaasti flash-muistissa hajapäivitysten suuren määrän vuoksi. Flashmuistia varten on kehitetty useita B+-puun muunnelmia, joissa hajapäivitysten määrää on onnistuttu vähentämään. Puskurin hallintaa voidaan optimoida flash-muistia varten vähentämällä hitaiden kirjoitusten määrää nopeiden lukujen määrän kustannuksella sekä muuttamalla hitaita hajakirjoituksia nopeammiksi peräkkäisten sivujen kirjoituksiksi. B.3 (hardware, memory structures) H.2.2 (database management, physical design)
Resumo:
Memory Meanders is an ethnographic analysis of a postcolonial migrant community, white former Rhodesians, who have emigrated from Zimbabwe to South Africa after Zimbabwe s independence in 1980. An estimated 100 000 whites left the country during the first years of independence. Majority of these emigrants settled in South Africa. In recent years President Mugabe s land redistribution program has inflicted forced expulsions and violence against white farmers and black farm workers, and instigated a new wave of emigration. Concerning the study of Southern Africa, my research is therefore very topical. In recent years there has been a growing concern to study postcolonialism as it unfolds in the lived realities of actual postcolonies. A rising interest has also been cast on colonial cultures and white colonials within complex power relationships. My research offers insight to these discussions by investigating the ways in which the colonial past affects and effects in the present activities and ideas of former colonials. The study also takes part in discussing fundamental questions concerning how diaspora communities socially construct their place in the world in relation to the place left behind, to their current places of dwelling and to the community in dispersal. In spite of Rhodesia s incontestable ending, it is held close by social practices; by thoughts and talks, by material displays, and by webs of meaningful relationships. Such social memory practices, I suggest, are fundamental to how the community understands itself. The vantage points from which I examine how the ex-Rhodesians reminisce about Rhodesia concern ideas and practices related to place, home and commemoration. I first focus on the processes of symbolic investment that go into understanding place and landscape in Rhodesia and ask how the once dwelled-in places, iconic landscapes and experiences within places are reminisced about in diaspora. Secondly, I examine how home both as a mundanely organized sphere of everyday lives and as an idea of belonging is culturally configured, and analyze how and if homes travel in diaspora. In the final ethnographic section I focus on commemorative practices. I first analyze how food and culturally specific festive occasions of commensality are connected to social and sensual memory, considering the unique ways in which food acts as a mnemonic trigger in a diaspora community. The second example concerns the celebration of a centenary of Rhodesia in 1990. Through this case I describe how the mnemonic power of commemoration rests on the fact that culturally meaningful experiences are bodily re-enacted. I show how habitual memory connected to performance is one example of how memory gets passed-on in non-textual ways.
Resumo:
A large fraction of an XML document typically consists of text data. The XPath query language allows text search via the equal, contains, and starts-with predicates. Such predicates can be efficiently implemented using a compressed self-index of the document's text nodes. Most queries, however, contain some parts querying the text of the document, plus some parts querying the tree structure. It is therefore a challenge to choose an appropriate evaluation order for a given query, which optimally leverages the execution speeds of the text and tree indexes. Here the SXSI system is introduced. It stores the tree structure of an XML document using a bit array of opening and closing brackets plus a sequence of labels, and stores the text nodes of the document using a global compressed self-index. On top of these indexes sits an XPath query engine that is based on tree automata. The engine uses fast counting queries of the text index in order to dynamically determine whether to evaluate top-down or bottom-up with respect to the tree structure. The resulting system has several advantages over existing systems: (1) on pure tree queries (without text search) such as the XPathMark queries, the SXSI system performs on par or better than the fastest known systems MonetDB and Qizx, (2) on queries that use text search, SXSI outperforms the existing systems by 1-3 orders of magnitude (depending on the size of the result set), and (3) with respect to memory consumption, SXSI outperforms all other systems for counting-only queries.
Resumo:
"The functional organization of auditory cortex (AC) is still poorly understood. Previous studies suggest segregation of auditory processing streams for spatial and nonspatial information located in the posterior and anterior AC, respectively (Rauschecker and Tian, 2000; Arnott et al., 2004; Lomber and Malhotra, 2008). Furthermore, previous studies have shown that active listening tasks strongly modulate AC activations (Petkov et al., 2004; Fritz et al., 2005; Polley et al., 2006). However, the task dependence of AC activations has not been systematically investigated. In the present study, we applied high-resolution functional magnetic resonance imaging of the AC and adjacent areas to compare activations during pitch discrimination and n-back pitch memory tasks that were varied parametrically in difficulty. We found that anterior AC activations were increased during discrimination but not during memory tasks, while activations in the inferior parietal lobule posterior to the AC were enhanced during memory tasks but not during discrimination. We also found that wide areas of the anterior AC and anterior insula were strongly deactivated during the pitch memory tasks. While these results are consistent with the proposition that the anterior and posterior AC belong to functionally separate auditory processing streams, our results show that this division is present also between tasks using spatially invariant sounds. Together, our results indicate that activations of human AC are strongly dependent on the characteristics of the behavioral task."
Resumo:
Aim: So far, most of the cognitive neuroscience studies investigating the development of brain activity in childhood have made comparisons between different age groups and ignored the individual stage of cognitive development. Given the wide variation in the rate of cognitive development, this study argues that chronological age alone cannot explain the developmental changes in brain activity. This study demonstrates how Piaget s theory and information on child s individual stage of development can complement the age-related evaluations of brain oscillatory activity. In addition, the relationship between cognitive development and working memory is investigated. Method: A total of 33 children (17 11-year-olds, 16 14-year-olds) participated in this study. The study consisted of behavioural tests and an EEG experiment. Behavioral tests included two Piagetian tasks (the Volume and Density task, the Pendulum task) and Raven s Standard Progressive Matrices task. During EEG experiment, subjects performed a modified version of the Sternberg s memory search paradigm which consisted of an auditorily presented memory set of 4 words and a probe word following these. The EEG data was analyzed using the event-related desynchronization / synchronization (ERD/ERS) method. The Pendulum task was used to assess the cognitive developmental stage of each subject and to form four groups based on age (11- or 14-year-olds) and cognitive developmental stage (concrete or formal operational stage). Group comparisons between these four groups were performed for the EEG data. Results and conclusions: Both age- and cognitive stage-related differences in brain oscillatory activity were found between the four groups. Importantly, age-related changes similar to those reported by previous studies were found also in this study, but these changes were modified by developmental stage. In addition, the results support a strong link between working memory and cognitive development by demonstrating differences in memory task related brain activity and cognitive developmental stages. Based on these findings it is suggested that in the future, comparisons of development of brain activity should not be based only on age but also on the individual cognitive developmental stage.
Resumo:
The triangular space between memory, narrative and pictorial representation is the terrain on which this article is developed. Taking the art of memory developed by Giordano Bruno (1548 – 1600) and the art of painting subtly revolutionised by Adam Elsheimer (1578 – 1610) as test-cases, it is shown how both subvert the norms of mimesis and narration prevalent throughout the Renaissance, how disrupted memory creates “incoherent” narratives, and how perspective and the notion of “place” are questioned in a corollary way. Two paintings by Elsheimer are analysed and shown to include, in spite of their supposed “realism”, numerous incoherencies, aporias and strange elements – often overlooked. Thus, they do not conform to two of the basic rules governing both the classical art of memory and the humanist art of painting: well-defined places and the exhaustive translatability of words into images (and vice-versa). In the work of Bruno, both his philosophical claims and the literary devices he uses are analysed as hints for a similar (and contemporaneous) undermining of conventions about the transparency and immediacy of representation.