4 resultados para Glycemic control
em Helda - Digital Repository of University of Helsinki
Resumo:
Background: Both maternal and fetal complications are increased in diabetic pregnancies. Although hypertensive complications are increased in pregnant women with pregestational diabetes, reports on hypertensive complications in women with gestational diabetes mellitus (GDM) have been contradictory. Congenital malformations and macrosomia are the main fetal complications in Type 1 diabetic pregnancies, whereas fetal macrosomia and birth trauma but not congenital malformations are increased in GDM pregnancies. Aims: To study the frequency of hypertensive disorders in gestational diabetes mellitus. To evaluate the risk of macrosomia and brachial plexus injury (Erb’s palsy) and the ability of the 2-hour glucose tolerance test (OGTT) combined with the 24-hour glucose profile to distinguish between low and high risks of fetal macrosomia among women with GDM. To evaluate the relationship between glycemic control and the risk of fetal malformations in pregnancies complicated by Type 1 diabetes mellitus. To assess the effect of glycemic control on the occurrence of preeclampsia and pregnancy-induced hypertension in Type 1 diabetic pregnancies. Subjects: A total of 986 women with GDM and 203 women with borderline glucose intolerance (one abnormal value in the OGTT) with a singleton pregancy, 488 pregnant women with Type 1 diabetes (691 pregnancies and 709 offspring), and 1154 pregnant non-diabetic women (1181 pregnancies and 1187 offspring) were investigated. Results: In a prospective study on 81 GDM patients the combined frequency of preeclampsia and PIH was higher than in 327 non-diabetic controls (19.8% vs 6.1%, p<0.001). On the other hand, in 203 women with only one abnormal value in the OGTT, the rate of hypertensive complications did not differ from that of the controls. Both GDM women and those with only one abnormal value in the OGTT had higher pre-pregnancy weights and BMIs than the controls. In a retrospective study involving 385 insulin-treated and 520 diet-treated GDM patients, and 805 non-diabetic control pregnant women, fetal macrosomia occurred more often in the insulin-treated GDM pregnancies (18.2%, p<0.001) than in the diet-treated GDM pregnancies (4.4%), or the control pregnancies (2.2%). The rate of Erb’s palsy in vaginally delivered infants was 2.7% in the insulin-treated group of women and 2.4% in the diet-treated women compared with 0.3% in the controls (p<0.001). The cesarean section rate was more than twice as high (42.3% vs 18.6%) in the insulin-treated GDM patients as in the controls. A major fetal malformation was observed in 30 (4.2%) of the 709 newborn infants in Type 1 diabetic pregnancies and in 10 (1.4%) of the 735 controls (RR 3.1, 95% CI 1.6–6.2). Even women whose levels of HbA1c (normal values less than 5.6%) were only slightly increased in early pregnancy (between 5.6 and 6.8%) had a relative risk of fetal malformation of 3.0 (95% CI 1.2–7.5). Only diabetic patients with a normal HbA1c level (<5.6%) in early pregnancy had the same low risk of fetal malformations as the controls. Preeclampsia was diagnosed in 12.8% and PIH in 11.4% of the 616 Type 1 diabetic women without diabetic nephropathy. The corresponding frequencies among the 854 control women were 2.7% (OR 5.2; 95% CI 3.3–8.4) for preeclampsia and 5.6% (OR 2.2, 95% CI 1.5–3.1) for PIH. Multiple logistic regression analysis indicated that glycemic control, nulliparity, diabetic retinopathy and duration of diabetes were statistically significant independent predictors of preeclampsia. The adjusted odds ratios for preeclampsia were 1.6 (95% CI 1.3–2.0) for each 1%-unit increment in the HbA1c value during the first trimester and 0.6 (95% CI 0.5–0.8) for each 1%-unit decrement during the first half of pregnancy. In contrast, changes in glycemic control during the second half of pregnancy did not alter the risk of preeclampsia. Conclusions: In type 1 diabetic pregnancies it is extremely important to achieve optimal glycemic control before pregnancy and maintain it throughout pregnancy in order to decrease the complication rates both in the mother and in her offspring. The rate of fetal macrosomia and birth trauma in GDM pregnancies, especially in the group of insulin-treated women, is still relatively high. New strategies for screening, diagnosing, and treatment of GDM must be developed in order to decrease fetal and neonatal complications.
Resumo:
Introduction: The epidemic of obesity has been accompanied by an increase in the prevalence of the metabolic syndrome, type 2 diabetes, and non-alcoholic fatty liver disease (NAFLD). However, not all obese subjects develop these metabolic abnormalities. Hepatic fat accumulation is related to hepatic insulin resistance, which in turn leads to hyperglycemia, hypertriglyceridemia, and a low HDL cholesterol con-centration. The present studies aimed to investigate 1) how intrahepatic as compared to intramyocellular fat is related to insulin resistance in these tissues and to the metabolic syndrome (Study I); 2) the amount of liver fat in subjects with and without the metabolic syndrome, and which clinically available markers best reflect liver fat content (Study II); 3) the effect of liver fat on insulin clearance (Study III); 4) whether type 2 diabetic patients have more liver fat than age-, gender-, and BMI-matched non-diabetic subjects (Study IV); 5) how type 2 diabetic patients using exceptionally high doses of insulin respond to addition of a PPARγ agonist (Study V). Subjects and methods: The study groups consisted of 45 (Study I), 271 (Study II), and 80 (Study III) non-diabetic subjects, and of 70 type 2 diabetic patients and 70 matched control subjects (Study IV). In Study V, a total of 14 poorly controlled type 2 diabetic patients treated with high doses of insulin were studied before and after rosiglitazone treatment (8 mg/day) for 8 months. In all studies, liver fat content was measured by proton magnetic resonance spectroscopy, and sub-cutaneous and intra-abdominal fat content by MRI. In addition, circulating markers of insulin resistance and serum liver enzyme concentrations were determined. Hepatic (i.v. insulin infusion rate 0.3 mU/kg∙min combined with [3-3H]glucose, Studies I, III, and V) and muscle (1.0 mU/kg min, Study I) insulin sensitivities were measured by the euglycemic hyperinsulinemic clamp technique. Results: Fat accumulation in the liver rather than in skeletal muscle was associated with features of insulin resistance, i.e. increased fasting serum (fS) triglycerides and decreased fS-HDL cholesterol, and with hyperinsulinemia and low adiponectin concentrations (Study I). Liver fat content was 4-fold higher in subjects with as compared to those without the metabolic syndrome, independent of age, gender, and BMI. FS-C-peptide was the best correlate of liver fat (Study II). Increased liver fat was associated with both impaired insulin clearance and hepatic insulin resistance independent of age, gender, and BMI (Study III). Type 2 diabetic patients had 80% more liver fat than age-, weight-, and gender-matched non-diabetic subjects. At any given liver fat content, S-ALT underestimated liver fat in the type 2 diabetic patients as compared to the non-diabetic subjects (Study IV). In Study V, hepatic insulin sensitivity increased and glycemic control improved significantly during rosiglitazone treatment. This was associated with lowering of liver fat (on the average by 46%) and insulin requirements (40%). Conclusions: Liver fat is increased both in the metabolic syndrome and type 2 diabetes independent of age, gender, and BMI. A fatty liver is associated with both hepatic insulin resistance and impaired insulin clearance. Rosi-glitazone may be particularly effective in type 2 diabetic patients who are poorly controlled despite using high insulin doses.
Resumo:
Introduction: The pathogenesis of diabetic nephropathy remains a matter of debate, although strong evidence suggests that it results from the interaction between susceptibility genes and the diabetic milieu. The true pathogenetic mechanism remains unknown, but a common denominator of micro- and macrovascular complications may exist. Some have suggested that low-grade inflammation and activation of the innate immune system might play a synergistic role in the pathogenesis of diabetic nephropathy. Aims of the study: The present studies were undertaken to investigate whether low-grade inflammation, mannan-binding lectin (MBL) and α-defensin play a role, together with adiponectin, in patients with type 1 diabetes and diabetic nephropathy. Subjects and methods: This study is part of the ongoing Finnish Diabetic Nephropathy Study (FinnDiane). The first four cross-sectional substudies of this thesis comprised 194 patients with type 1 diabetes divided into three groups (normo-, micro-, and macroalbuminuria) according to their albumin excretion rate (AER). The fifth substudy aimed to determine whether baseline serum adiponectin plays a role in the development and progression of diabetic nephropathy. This follow-up study included 1330 patients with type 1 diabetes and a mean follow-up period of five years. The patients were divided into three groups depending on their AER at baseline. As a measure of low-grade inflammation, highly sensitive CRP (hsCRP) and α-defensin were measured with radio-immunoassay, and interleukin-6 (IL-6) with high- sensitivity enzyme immuno-assay. Mannan-binding lectin and adiponectin were determined with time-resolved immunofluorometric assays. The progression of albuminuria from one stage to the other served as a measure of the progression of diabetic nephropathy. Results: Low-grade inflammatory markers, MBL, adiponectin, and α-defensin were all associated with diabetic nephropathy, whereas MBL, adiponectin, and α-defensin per se were unassociated with low-grade inflammatory markers. AER was the only clinical variable independently associated with hsCRP. AER, HDL-cholesterol and the duration of diabetes were independently associated with IL-6. HbA1c was the only variable independently associated with MBL. The estimated glomerular filtration rate (eGFR), AER, and waist-to-hip ratio were independently associated with adiponectin. Systolic blood pressure, HDL-cholesterol, total cholesterol, age, and eGFR were all independently associated with α-defensin. In patients with macroalbuminuria, progression to end-stage renal disease (ESRD) was associated with higher baseline adiponectin concentrations. Discussion and conclusions: Low-grade inflammation, MBL, adiponectin, and defensin were all associated with diabetic nephropathy in these cross-sectional studies. In contrast however, MBL, adiponectin, and defensin were not associated with low-grade inflammatory markers per se. Nor was defensin associated with MBL, which may suggest that these different players function in a coordinated fashion during the deleterious process of diabetic nephropathy. The question of what causes low-grade inflammation in patients with type 1 diabetes and diabetic nephropathy, however, remains unanswered. We could observe in our study that glycemic control, an atherosclerotic lipid profile, and waist-to-hip ratio (WHR) were associated with low-grade inflammation in the univariate analysis, although in the multivariate analysis, only AER, HDL-cholesterol, and the duration of diabetes, as a measure of glycemic load, proved to be independently associated with inflammation. Notably, all these factors are modifiable with changes in lifestyle and/or with a targeted medication. In the follow-up study, elevated serum adiponectin levels at baseline predicted the progression from macroalbuminuria to ESRD independently of renal function at baseline. This observation does not preclude adiponectin as a favorable factor during the process of diabetic nephropathy, since the rise in serum adiponectin concentrations may remain a mechanism by which the body compensates for the demands created by the diabetic milieu.
Resumo:
Background: One-third of patients with type 1 diabetes develop diabetic complications, such as diabetic nephropathy. The diabetic complications are related to a high mortality from cardiovascular disease, impose a great burden on the health care system, and reduce the health-related quality of life of patients. Aims: This thesis assessed, whether parental risk factors identify subjects at a greater risk of developing diabetic complications. Another aim was to evaluate the impact of a parental history of type 2 diabetes on patients with type 1 diabetes. A third aim was to assess the role of the metabolic syndrome in patients with type 1 diabetes, both its presence and its predictive value with respect to complications. Subjects and methods: This study is part of the ongoing nationwide Finnish Diabetic Nephropathy (FinnDiane) Study. The study was initiated in 1997, and, thus far, 4,800 adult patients with type 1 diabetes have been recruited. Since 2004, follow-up data have also been collected in parallel to the recruitment of new patients. Studies I to III have a cross-sectional design, whereas Study IV has a prospective design. Information on parents was obtained from the patients with type 1 diabetes by a questionnaire. Results: Clustering of parental hypertension, cardiovascular disease, and diabetes (type 1 and type 2) was associated with diabetic nephropathy in patients with type 1 diabetes, as was paternal mortality. A parental history of type 2 diabetes was associated with a later onset of type 1 diabetes, a higher prevalence of the metabolic syndrome, and a metabolic profile related to insulin resistance, despite no difference in the distribution of human leukocyte antigen genotypes or the presence of diabetic complications. A maternal history of type 2 diabetes, seemed to contribute to a worse metabolic profile in the patients with type 1 diabetes than a paternal history. The metabolic syndrome was a frequent finding in patients with type 1 diabetes, observed in 38% of males and 40% of females. The prevalence increased with worsening of the glycemic control and more severe renal disease. The metabolic syndrome was associated with a 3.75-fold odds ratio for diabetic nephropathy, and all of the components of the syndrome were independently associated with diabetic nephropathy. The metabolic syndrome, independent of diabetic nephropathy, increased the risk of cardiovascular events and cardiovascular and diabetes-related mortality over a 5.5-year follow-up. With respect to progression of diabetic nephropathy, the role of the metabolic syndrome was less clear, playing a strong role only in the progression from macroalbuminuria to end-stage renal disease. Conclusions: Familial factors and the metabolic syndrome play an important role in patients with type 1 diabetes. Assessment of these factors is an easily applicable tool in clinical practice to identify patients at a greater risk of developing diabetic complications.