95 resultados para FOREST FRAGMENTS
em Helda - Digital Repository of University of Helsinki
Resumo:
The first aim of this thesis was to explore the structural characteristics of near-natural forests and to quantify how human utilization has changed them. For this, we examined the stand characteristics in Norway spruce Picea abies (L.) Karst-dominated old-growth stands in northwestern Russia and in old Scots pine Pinus sylvestris L.-dominated stands in three regions from southern Finland to northwestern Russia. In the second study, we also compared stands with different degrees of human impact, from near-natural stands and stands selectively cut in the past to managed stands. Secondly, we used an experimental approach to study the short-term effects of different restorative treatments on forest structure and regeneration in managed Picea abies stands in southern Finland. Restorative treatments consisted of a partial cut combined with three levels of coarse woody debris retention, and a fire/no-fire treatment. In addition, we examined burned and unburned reference stands without cutting treatments. Results from near-natural Picea abies forests emphasize the dynamic character of old-growth forests, the variety of late-successional forest structures, and the fact that extended time periods are needed to attain certain late-successional stages with specific structural and habitat attributes, such as large-diameter deciduous trees and a variety of deadwood. The results from old Pinus sylvestris-dominated forests showed that human impact in the form of forest utilization and fire exclusion has strongly modified and reduced the structural complexity of stands. Consequently, small protected forest fragments in Finland may not serve as valid natural reference areas for forest restoration. However, results from the restoration experiment showed that early-successional natural stand characteristics can be restored to structurally impoverished managed Picea abies stands, despite a significant portion of wood volume being harvested. A variety of restoration methods is needed, due to differences in the condition of the forest when restoration is initiated and the variety of successional stages of forest structures after anthropogenic and natural disturbances. Keywords: dead wood, disturbance dynamic, fire, near-natural stand, rehabilitation, succession
Resumo:
The impacts of fragmentation and recreational use on the hemiboreal urban forest understorey vegetation and the microbial community of the humus layer (the phospholipid fatty acid (PLFA) pattern, microbial biomass and microbial activity, measured as basal respiration) were examined in the greater Helsinki area, southern Finland. Trampling tolerance of 1) herb-rich OMT, 2) mesic MT, and 3) sub-xeric VT forests (in decreasing order of fertility) was studied by comparing relative understorey vegetation cover (urban/untrampled reference ratio) of the three forest types. The trampling tolerance of forest vegetation increased with the productivity of the site (sub-xeric < mesic < herb-rich). Wear of understorey vegetation correlated positively with the number of residents (i.e., recreational pressure) around the forest patch. An increase of 15000 residents within a radius of 1 km around a forest patch was associated with ca. 30% decrease in the relative understorey vegetation cover. The cover of dwarf shrub Vaccinium myrtillus in particular decreased with increasing levels of wear. The cover of mosses in urban forests was less than half of that in untrampled reference areas. Cover of tree saplings, mainly Sorbus aucuparia, and some resilient herbs was higher than in the reference areas. In small urban forest fragments, broad-leaved trees, grasses and herbs were more abundant and mosses were scarcer than in larger urban forest areas. Thus, due to trampling and edge effects, resilient herb and grass species are replacing sensitive dwarf shrubs, mosses and lichens in urban forests. Differences in the soil microbial community structure were found between paths and untrampled areas and the effects of paths extended more than one meter from the paths. Paths supported approximately 25-30% higher microbial biomass with a transition zone of at least 1 m from the path edge. However, microbial activity per unit of biomass was lower on paths than in untrampled areas. Furthermore, microbial biomass and activity were 30-45% lower at the first 20 m into the forest fragments, due to low moisture content of humus near the edge. The decreased microbial activity detected at forest edges and paths implies decreased litter decomposition rates, and thus, a change in nutrient cycling. Changes in the decomposition and nutrient supply may in turn affect the diversity and function of plant communities in urban forests. Keywords: boreal forest vegetation, edge effects, phospholipid fatty acids, trampling, urban woodlands, wear
Resumo:
The area of intensively managed forests, in which required conditions for several liverwort species are seldom found, has expanded over the forest landscape during the last century. Liverworts are very sensitive to habitat changes, because they demand continuously moist microclimate. Consequently, about third of the forest liverworts have been classified as threatened or near threatened in Finland. The general objective of this thesis is to increase knowledge of the reproductive and dispersal strategies of the substrate-specific forest bryophytes. A further aim was to develop recommendations for conservation measures for species inhabiting unstable and stable habitats in forest landscape. Both population ecological and genetic methods have been applied in the research. Anastrophyllum hellerianum inhabits spatially and temporally limited substrate patches, decaying logs, which can be considered as unstable habitats. The results show that asexual reproduction by gemmae is the dominant mode of reproduction, whereas sexual reproduction is considerably infrequent. Unlike previously assumed, not only spores but also the asexual propagules may contribute to long-distance dispersal. The combination of occasional spore production and practically continuous, massive gemma production facilitates dispersal both on a local scale and over long distances, and it compensates for the great propagule losses that take place preceding successful establishment at suitable sites. However, establishment probability of spores may be restricted because of environmental and biological limitations linked to the low success of sexual reproduction. Long-lasting dry seasons are likely to result in a low success of sexual reproduction and decreased release rate of gemmae from the shoots, and consequent fluctuations in population sizes. In the long term, the substratum limitation is likely to restrict population sizes and cause local extinctions, especially in small-sized remnant populations. Contrastingly, larger forest fragments with more natural disturbance dynamics, to which the species is adapted, are pivotal to species survival. Trichocolea tomentella occupies stable spring and mesic habitats in woodland. The relatively small populations are increasingly fragmented with a high risk for extinction for extrinsic reasons. The results show that T. tomentella mainly invests in population persistence by effective clonal growth via forming independent ramets and in competitive ability, and considerably less in sexuality and dispersal potential. The populations possess relatively high levels of genetic diversity regardless of population size and of degree of isolation. Thus, the small-sized populations inhabiting stable habitats should not be neglected when establishing conservation strategies for the species and when considering the habitat protection of small spring sites. Restricted dispersal capacity, also on a relatively small spatial scale, is likely to prevent successful (re-)colonization in the potential habitat patches of recovering forest landscapes. By contrast, random short-range dispersal of detached vegetative fragments within populations at suitable habitat seems to be frequent. Thus, the restoration actions of spring and streamside habitats close to the populations of T. tomentella may contribute to population expansion. That, in turn, decreases the harmful effects of environmental stochasticity.
Resumo:
The ongoing rapid fragmentation of tropical forests is a major threat to global biodiversity. This is because many of the tropical forests are so-called biodiversity 'hotspots', areas that host exceptional species richness and concentrations of endemic species. Forest fragmentation has negative ecological and genetic consequences for plant survival. Proposed reasons for plant species' loss in forest fragments are, e.g., abiotic edge effects, altered species interactions, increased genetic drift, and inbreeding depression. To be able to conserve plants in forest fragments, the ecological and genetic processes that threaten the species have to be understood. That is possible only after obtaining adequate information on their biology, including taxonomy, life history, reproduction, and spatial and genetic structure of the populations. In this research, I focused on the African violet (genus Saintpaulia), a little-studied conservation flagship from the Eastern Arc Mountains and Coastal Forests hotspot of Tanzania and Kenya. The main objective of the research was to increase understanding of the life history, ecology and population genetics of Saintpaulia that is needed for the design of appropriate conservation measures. A further aim was to provide population-level insights into the difficult taxonomy of Saintpaulia. Ecological field work was conducted in a relatively little fragmented protected forest in the Amani Nature Reserve in the East Usambara Mountains, in northeastern Tanzania, complemented by population genetic laboratory work and ecological experiments in Helsinki, Finland. All components of the research were conducted with Saintpaulia ionantha ssp. grotei, which forms a taxonomically controversial population complex in the study area. My results suggest that Saintpaulia has good reproductive performance in forests with low disturbance levels in the East Usambara Mountains. Another important finding was that seed production depends on sufficient pollinator service. The availability of pollinators should thus be considered in the in situ management of threatened populations. Dynamic population stage structures were observed suggesting that the studied populations are demographically viable. High mortality of seedlings and juveniles was observed during the dry season but this was compensated by ample recruitment of new seedlings after the rainy season. Reduced tree canopy closure and substrate quality are likely to exacerbate seedling and juvenile mortality, and, therefore, forest fragmentation and disturbance are serious threats to the regeneration of Saintpaulia. Restoration of sufficient shade to enhance seedling establishment is an important conservation measure in populations located in disturbed habitats. Long-term demographic monitoring, which enables the forecasting of a population s future, is also recommended in disturbed habitats. High genetic diversities were observed in the populations, which suggest that they possess the variation that is needed for evolutionary responses in a changing environment. Thus, genetic management of the studied populations does not seem necessary as long as the habitats remain favourable for Saintpaulia. The observed high levels of inbreeding in some of the populations, and the reduced fitness of the inbred progeny compared to the outbred progeny, as revealed by the hand-pollination experiment, indicate that inbreeding and inbreeding depression are potential mechanisms contributing to the extinction of Saintpaulia populations. The relatively weak genetic divergence of the three different morphotypes of Saintpaulia ionantha ssp. grotei lend support to the hypothesis that the populations in the Usambara/lowlands region represent a segregating metapopulation (or metapopulations), where subpopulations are adapting to their particular environments. The partial genetic and phenological integrity, and the distinct trailing habit of the morphotype 'grotei' would, however, justify its placement in a taxonomic rank of its own, perhaps in a subspecific rank.
Resumo:
Although changes in urban forest vegetation have been documented in previous Finnish studies, the reasons for these changes have not been studied explicitly. Especially, the consequences of forest fragmentation, i.e. the fact that forest edges receive more solar radiation, wind and air-borne nutrients than interiors have been ignored. In order to limit the change in urban forest vegetation we need to know why it occurs. Therefore, the effects of edges and recreational use of urban forests on vegetation were investigated together in this thesis to reveal the relative strengths of these effects and to provide recommendations for forest management. Data were collected in the greater Helsinki area (in the cities of Helsinki, Vantaa and Espoo, and in the municipalities of Sipoo and Tuusula) and in the Lahti region (in the city of Lahti and in the municipality of Hollola) by means of systematic and randomized vegetation and soil sampling and tree measurements. Sample plots were placed from the forest edges to the interiors to investigate the effects of forest edges, and on paths of different levels of wear and off these paths to investigate the effects of trampling. The natural vegetation of mesic and sub-xeric forest site types studied was sensitive both to the effects of the edge and to trampling. The abundances of dwarf shrubs and bryophytes decreased, while light- and nitrogen-demanding herbs and grasses - and especially Sorbus aucuparia – were favoured at the edges and next to the paths. Results indicated that typical forest site types at the edges are changing toward more nitrophilic vegetation communities. Covers of the most abundant forest species decreased considerably – even tens of percentages – from interiors to the edges indicating strong edge effects. These effects penetrated at least up to 50 m from the forest edges into the interiors, especially at south to west facing open edges. The effects of trampling were pronounced on paths and even low levels of trampling decreased the abundances of certain species considerably. The effects of trampling extended up to 8 m from path edges. Results showed that the fragmentation of urban forest remnants into small and narrow patches should be avoided in order to maintain natural forest understorey vegetation in the urban setting. Thus, urban forest fragments left within urban development should be at least 3 ha in size, and as circular as possible. Where the preservation of representative original forest interior vegetation is a management aim, closed edges with conifers can act as an effective barrier against solar radiation, wind and urban load, thereby restricting the effects of the edge. Tree volume at the edge should be at least 225-250 m3 ha-1 and the proportion of conifers (especially spruce) 80% or more of the tree species composition. Closed, spruce-dominated edges may also prevent the excessive growth of S. aucuparia saplings at urban forest edges. In addition, closed edges may guide people’s movements to the maintained paths, thus preventing the spontaneous creation of dense path networks. In urban areas the effects of edges and trampling on biodiversity may be considerable, and are important to consider when the aim of management is to prevent the development of homogeneous herb-grass dominated vegetation communities, as was observed at the investigated edges.
Resumo:
During the last decades there has been a global shift in forest management from a focus solely on timber management to ecosystem management that endorses all aspects of forest functions: ecological, economic and social. This has resulted in a shift in paradigm from sustained yield to sustained diversity of values, goods and benefits obtained at the same time, introducing new temporal and spatial scales into forest resource management. The purpose of the present dissertation was to develop methods that would enable spatial and temporal scales to be introduced into the storage, processing, access and utilization of forest resource data. The methods developed are based on a conceptual view of a forest as a hierarchically nested collection of objects that can have a dynamically changing set of attributes. The temporal aspect of the methods consists of lifetime management for the objects and their attributes and of a temporal succession linking the objects together. Development of the forest resource data processing method concentrated on the extensibility and configurability of the data content and model calculations, allowing for a diverse set of processing operations to be executed using the same framework. The contribution of this dissertation to the utilisation of multi-scale forest resource data lies in the development of a reference data generation method to support forest inventory methods in approaching single-tree resolution.
Resumo:
This dissertation examines the short- and long-run impacts of timber prices and other factors affecting NIPF owners' timber harvesting and timber stocking decisions. The utility-based Faustmann model provides testable hypotheses of the exogenous variables retained in the timber supply analysis. The timber stock function, derived from a two-period biomass harvesting model, is estimated using a two-step GMM estimator based on balanced panel data from 1983 to 1991. Timber supply functions are estimated using a Tobit model adjusted for heteroscedasticity and nonnormality of errors based on panel data from 1994 to 1998. Results show that if specification analysis of the Tobit model is ignored, inconsistency and biasedness can have a marked effect on parameter estimates. The empirical results show that owner's age is the single most important factor determining timber stock; timber price is the single most important factor in harvesting decision. The results of the timber supply estimations can be interpreted using utility-based Faustmann model of a forest owner who values a growing timber in situ.
Resumo:
The study focused on the different ways that forest-related rights can be devolved to the local level according to the current legal frameworks in Laos, Nepal, Vietnam, Kenya, Mozambique and Tanzania. The eleven case studies represented the main ways in which forest-related rights can be devolved to communities or households in these countries. The objectives of this study were to 1) analyse the contents and extent of forest-related rights that can be devolved to the local level, 2) develop an empirical typology that represents the main types of devolution, and 3) compare the cases against a theoretical ideal type to assess in what way and to what extent the cases are similar to or differ from the theoretical construct. Fuzzy set theory, Qualitative Comparative Analysis and ideal type analysis were used in analysing the case studies and in developing an empirical typology. The theoretical framework, which guided data collection and analyses, was based on institutional economics and theories on property rights, common pool resources and collective action. On the basis of the theoretical and empirical knowledge, the most important attributes of rights were defined as use rights, management rights, exclusion rights, transfer rights and the duration and security of the rights. The ideal type was defined as one where local actors have been devolved comprehensive use rights, extensive management rights, rights to exclude others from the resource and rights to transfer these rights. In addition, the rights are to be secure and held perpetually. The ideal type was used to structure the analysis and as a tool against which the cases were analysed. The contents, extent and duration of the devolved rights varied greatly. In general, the results show that devolution has mainly meant the transfer of use rights to the local level, and has not really changed the overall state control over forest resources. In most cases the right holders participate, or have a limited role in the decision making regarding the harvesting and management of the resource. There was a clear tendency to devolve the rights to enforce rules and to monitor resource use and condition more extensively than the powers to decide on the management and development of the resource. The empirical typology of the cases differentiated between five different types of devolution. The types can be characterised by the devolution of 1) restricted use and control rights, 2) extensive use rights but restricted control rights, 3) extensive rights, 4) insecure, short term use and restricted control rights, and 5) insecure extensive rights. Overall, the case studies conformity to the ideal type was very low: only two cases were similar to the ideal type, all other cases differed considerably from the ideal type. The restricted management rights were the most common reason for the low conformity to the ideal type (eight cases). In three cases, the short term of the rights, restricted transfer rights, restricted use rights or restricted exclusion rights were the reason or one of the reasons for the low conformity to the ideal type. In two cases the rights were not secure.
Resumo:
The forest simulator is a computerized model for predicting forest growth and future development as well as effects of forest harvests and treatments. The forest planning system is a decision support tool, usually including a forest simulator and an optimisation model, for finding the optimal forest management actions. The information produced by forest simulators and forest planning systems is used for various analytical purposes and in support of decision making. However, the quality and reliability of this information can often be questioned. Natural variation in forest growth and estimation errors in forest inventory, among other things, cause uncertainty in predictions of forest growth and development. This uncertainty stemming from different sources has various undesirable effects. In many cases outcomes of decisions based on uncertain information are something else than desired. The objective of this thesis was to study various sources of uncertainty and their effects in forest simulators and forest planning systems. The study focused on three notable sources of uncertainty: errors in forest growth predictions, errors in forest inventory data, and stochastic fluctuation of timber assortment prices. Effects of uncertainty were studied using two types of forest growth models, individual tree-level models and stand-level models, and with various error simulation methods. New method for simulating more realistic forest inventory errors was introduced and tested. Also, three notable sources of uncertainty were combined and their joint effects on stand-level net present value estimates were simulated. According to the results, the various sources of uncertainty can have distinct effects in different forest growth simulators. The new forest inventory error simulation method proved to produce more realistic errors. The analysis on the joint effects of various sources of uncertainty provided interesting knowledge about uncertainty in forest simulators.