27 resultados para FOOD TECHNOLOGY

em Helda - Digital Repository of University of Helsinki


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Despite of improving levels of hygiene, the incidence of registered food borne disease has been at the same level for many years: there were 40 to 90 epidemics in which 1000-9000 persons contracted food poisoning through food or drinking water in Finland. Until the year 2004 salmonella and campylobacter were the most common bacterial causes of food borne diseases, but in years 2005-2006 Bacillus cereus was the most common. Similar developement has been published i.e. in Germany already in the 1990´s. One reason for this can be Bacillus cereus and its emetic toxin, cereulide. Bacillus cereus is a common environmental bacterium that contaminates raw materials of food. Otherwise than salmonella and campylobacter, Bacillus cereus is a heat resistant bacterium, capable of surviving most cooking procedures due to the production of highly thermo resistant spores. The food involved has usually been heat treated and surviving spores are the source of the food poisoning. The heat treatment induces germination of the spore and the vegetative cells then produce toxins. This doctoral thesis research focuses on developing methods for assessing and eliminating risks to food safety by cereulide producing Bacillus cereus. The biochemistry and physiology of cereulide production was investigated and the results were targeted to offer tools for minimizing toxin risk in food during the production. I developed methods for the extraction and quantitative analysis of cereulide directly from food. A prerequisite for that is knowledge of the chemical and physical properties of the toxin. Because cereulide is practically insoluble in water, I used organic solvents; methanol, ethanol and pentane for the extraction. For extraction of bakery products I used high temperature (100C) and pressure (103.4 bars). Alternaties for effective extraction is to flood the plain food with ethanol, followed by stationary equilibration at room temperature. I used this protocol for extracting cereulide from potato puree and penne. Using this extraction method it is also possible also extract cereulide from liquid food, like milk. These extraction methods are important improvement steps for studying of Bacillus cereus emetic food poisonings. Prior my work, cereulide extraction was done using water. As the result, the yield was poor and variable. To investigate suspected food poisonings, it is important to show actual toxicity of the incriminated food. Many toxins, but not cereulide, inactivate during food processing like heating. The next step is to identify toxin by chemical methods. I developed with my colleague Maria Andesson a rapid assay for the detection of cereulide toxicity, within 5 to 15 minutes. By applying this test it is possible to rapidly detect which food was causing the food poisoning. The chemical identification of cereulide was achieved using mass spectrometry. I used cereulide specific molecular ions, m/z (+/-0.3) 1153.8 (M+H+), 1171.0 (M+NH4+), 1176.0 (M+Na+) and 1191.7 (M+K+) for reliable identification. I investigated foods to find out their amenability to accumulate cereulide. Cereulide was formed high amounts (0.3 to 5.5 microg/g wet wt) when of cereulide producing B. cereus strains were present in beans, rice, rice-pastry and meat-pastry, if stored at non refrigerated temperatures (21-23C). Rice and meat pastries are frequently consumed under conditions where no cooled storage is available e.g. picnics and outdoor events. Bacillus cereus is a ubiquitous spore former and is therefore difficult to eliminate from foods. It is therefore important to know which conditions will affect the formation of cereulide in foods. My research showed that the cereulide content was strongly (10 to 1000 fold differences in toxin content) affected by the growth environment of the bacterium. Storage of foods under nitrogen atmosphere (> 99.5 %) prevented the production of cereulide. But when also carbon dioxide was present, minimizing the oxygen contant (< 1%) did not protect the food from formation of cereulide in preliminary experiments. Also food supplements affected cereulide production at least in the laboratory. Adding free amino acids, leucine and valine, stimulated cereulide production 10 to 20 fold. In peptide bonded form these amino acids are natural constituents in all proteins. Interestingly, adding peptide bonded leucine and valine had no significant effect on cereulide production. Free amino acids leucine and valine are approved food supplements and widely used as flawour modifiers in food technology. My research showed that these food supplements may increase food poisoning risk even though they are not toxic themselves.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis reports on investigations into the influence of heat treatment on the manufacturing of oat flakes. Sources of variation in the oat flake quality are reviewed, including the whole chain from the farm to the consumer. The most important quality parameters of oat flakes are the absence of lipid hydrolysing enzymes, specific weight, thickness, breakage (fines), water absorption. Flavour, colour and pasting properties are also important, but were not included in the experimental part of this study. Of particular interest was the role of heat processing. The first possible heat treatment may occur already during grain drying, which in Finland generally happens at the farm. At the mill, oats are often kilned to stabilise the product by inactivating lipid hydrolysing enzymes. Almost invariably steaming is used during flaking, to soften the groats and reduce flake breakage. This thesis presents the use of a material science approach to investigating a complex system, typical of food processes. A combination of fundamental and empirical rheological measurements was used together with a laboratory scale process to simulate industrial processing. The results were verified by means of industrial trials. Industrially produced flakes at three thickness levels (nominally 0.75, 0.85 and 0.90 mm) were produced from kilned and unkilned oat groats, and the flake strength was measured at different moisture contents. Kilning was not found to significantly affect the force required to puncture a flake with a 2mm cylindrical probe, which was taken as a measure of flake strength. To further investigate how heat processing contributes to flake quality, dynamic mechanical analysis was used to characterise the effect of heat on the mechanical properties of oats. A marked stiffening of the groat, of up to about 50% increase in storage modulus, was observed during first heating at around 36 to 57°C. This was also observed in tablets prepared from ground groats and extracted oat starch. This stiffening was thus attributed to increased adhesion between starch granules. Groats were steamed in a laboratory steamer and were tempered in an oven at 80 110°C for 30 90 min. The maximum force required to compress the steamed groats to 50% strain increased from 50.7 N to 57.5 N as the tempering temperature was increased from 80 to 110°C. Tempering conditions also affected water absorption. A significantly higher moisture content was observed for kilned (18.9%) compared to unkilned (17.1%) groats, but otherwise had no effect on groat height, maximum force or final force after a 5 s relaxation time. Flakes were produced from the tempered groats using a laboratory flaking machine, using a roll gap of 0.4 mm. Apart from specific weight, flake properties were not influenced by kilning. Tempering conditions however had significant effects on the specific weight, thickness and water absorption of the flakes, as well as on the amount of fine material (<2 mm) produced during flaking. Flake strength correlated significantly with groat strength and flake thickness. Trial flaking at a commercial mill confirmed that groat temperature after tempering influenced water absorption. Variation in flake strength was observed , but at the groat temperatures required to inactivate lipase, it was rather small. Cold flaking of groats resulted in soft, floury flakes. The results presented in this thesis suggest that heating increased the adhesion between starch granules. This resulted in an increase in the stiffness and brittleness of the groat. Brittle fracture, rather than plastic flow, during flaking could result in flaws and cracks in the flake. These would be expected to increase water absorption. This was indeed observed as tempering temperature increased. Industrial trials, conducted with different groat temperatures, confirmed the main findings of the laboratory experiments. The approach used in the present study allowed the systematic study of the effect of interacting process parameters on product quality. There have been few scientific studies of oat processing, and these results can be used to understand the complex effects of process variables on flake quality. They also offer an insight into what happens as the oat groat is deformed into a flake.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present study investigated the potato starches and polyols which were used to prepare edible films. The amylose content and the gelatinization properties of various potato starches extracted from different potato cultivars were determined. The amylose content of potato starches varied between 11.9 and 20.1%. Onset temperatures of gelatinization of potato starches in excess water varied independently of the amylose content from 58 to 61°C determined using differential scanning calorimetry (DSC). The crystallinity of selected native starches with low, medium and high amylose content was determined by X-ray diffraction. The relative crystallinity was found to be around 10 13% in selected native potato starches containing 13 17% water. The glass transition temperature, crystallization melting behavior and relaxations of polyols, erythritol, sorbitol and xylitol, were determined using (DSC), dielectric analysis (DEA) and dynamic mechanical analysis (DMA). The glass transition temperatures of xylitol and sorbitol decreased as a result of water plasticization. Anhydrous amorphous erythritol crystallized rapidly. Edible films were obtained from solutions containing gelatinized starch, plasticizer (polyol or binary polyol mixture) and water by casting and evaporating water at 35°C. The present study investigated effects of plasticizer type and content on physical and mechanical properties of edible films stored at various relative water vapor pressures (RVP). The crystallinity of edible films with low, medium and high amylose content was determined by X-ray diffraction and they were found to be practically amorphous. Water sorption and water vapor permeability (WVP) of films was affected by the type and content of plasticizer. Water vapor permeability of films increased with increasing plasticizer content and storage RVP. Generally, Young's modulus and tensile strength decreased with increasing plasticizer and water content with a concurrent increase in elongation at break of films. High contents of xylitol and sorbitol resulted in changes in physical and mechanical properties of films probably due to phase separation and crystallization of xylitol and sorbitol which was not observed when binary polyol mixtures were used as plasticizers. The mechanical properties and the water vapor permeability (WVP) of the films were found to be independent of the amylose content.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Milk microfiltration (0.05-0.2 um) is a membrane separation technique which divides milk components into casein-enriched and native whey fractions. Hitherto the effect of intensive microfiltration including a diafiltration step for both cheese and whey processing has not been studied. The microfiltration performance of skimmed milk was studied with polymeric and ceramic MF membranes. The changes caused by decreased concentration of milk lactose, whey protein and ash content for cheese milk quality and ripening were studied. The effects of cheese milk modification on the milk coagulation properties, cheese recovery yield, cheese composition, ripening and sensory quality as well as on the whey recovery yield and composition by microfiltration were studied. The functional properties of whey protein concentrate from native whey were studied and the detailed composition of whey protein concentrate powders made from cheese wheys after cheese milk pretreatments such as high temperature heat treatment (HH), microfiltration (MF) and ultrafiltration (UF) were compared. The studied polymeric spiral wound microfiltration membranes had 38.5% lower energy consumption, 30.1% higher retention of whey proteins to milk retentate and 81.9% lower permeate flux values compared to ceramic membranes. All studied microfiltration membranes were able to separate main whey proteins from skimmed milk. The optimal lactose content of Emmental cheese milk exceeded 3.2% and reduction of whey proteins and ash content of cheese milk with high concentration factor (CF) values increased the rate of cheese ripening. Reduction of whey protein content in cheese milk increased the concentration of caseinomacropeptide (CMP) of total proteins in cheese whey. Reduction of milk whey protein, lactose and ash content reduces milk rennet clotting time and increased the firmness of the coagulum. Cheese yield calculated from raw milk to cheese was lower with microfiltrated milks due to native whey production. Amounts of a-lactalbumin (a-LA) and b-lactoglobulin (b-LG) were significantly higher in the reference whey, indicating that HH, MF and UF milk pretreatments decrease the amounts of these valuable whey proteins in whey. Even low CF values in milk microfiltration (CF 1.4) reduced nutritional value of cheese whey. From the point of view of utilization of milk components it would be beneficial if the amount of native whey and the CMP content of cheese whey could be maximized. Whey protein concentrate powders made of native whey had excellent functional properties and their detailed amino acid composition differed from those of cheese whey protein concentrate powders.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The most common connective tissue research in meat science has been conducted on the properties of intramuscular connective tissue (IMCT) in connection with eating quality of meat. From the chemical and physical properties of meat, researchers have concluded that meat from animals younger than physiological maturity is the most tender. In pork and poultry, different challenges have been raised: the structure of cooked meat has weakened. In extreme cases raw porcine M. semimembranosus (SM) and in most turkey M. pectoralis superficialis (PS) can be peeled off in strips along the perimysium which surrounds the muscle fibre bundles (destructured meat), and when cooked, the slices disintegrate. Raw chicken meat is generally very soft and when cooked, it can even be mushy. The overall aim of this thesis was to study the thermal properties of IMCT in porcine SM in order to see if these properties were in association with destructured meat in pork and to characterise IMCT in poultry PS. First a 'baseline' study to characterise the thermal stability of IMCT in light coloured (SM and M. longissimus dorsi in pigs and PS in poultry) and dark coloured (M. infraspinatus in pigs and a combination of M. quadriceps femoris and M. iliotibialis lateralis in poultry) muscles was necessary. Thereafter, it was investigated whether the properties of muscle fibres differed in destructured and normal porcine muscles. Collagen content and also solubility of dark coloured muscles were higher than in light coloured muscles in pork and poultry. Collagen solubility was especially high in chicken muscles, approx. 30 %, in comparison to porcine and turkey muscles. However, collagen content and solubility were similar in destructured and normal porcine SM muscles. Thermal shrinkage of IMCT occurred at approximately 65 °C in pork and poultry. It occurred at lower temperature in light coloured muscles than in dark coloured muscles, although the difference was not always significant. The onset and peak temperatures of thermal shrinkage of IMCT were lower in destructured than in normal SM muscles, when the IMCT from SM muscles exhibiting ten lowest and ten highest ultimate pH values were investigated (onset: 59.4 °C vs. 60.7 °C, peak: 64.9 °C vs. 65.7 °C). As the destructured meat was paler than normal meat, the PSE (pale, soft, exudative) phenomenon could not be ruled out. The muscle fibre cross sectional area (CSA), the number of capillaries per muscle fibre CSA and per fibre and sarcomere length were similar in destructured and normal SM muscles. Drip loss was clearly higher in destructured than in normal SM muscles. In conclusion, collagen content and solubility and thermal shrinkage temperature vary between porcine and poultry muscles. One feature in the IMCT could not be directly associated with weakening of the meat structure. Poultry breast meat is very homogenous within the species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Olfaction, the sense of smell, has many important functions in humans. Human responses to odors show substantial individual variation. Olfactory receptor genes have been identified and other genes may also influence olfaction. However, the proportion of phenotypic variation in odor response due to genetic variation remains largely unknown. Little is also known about which genes modify specific responses to odors. This study aimed to elucidate genetic and environmental influences on human responses to odors. Individuals from Finnish families (n=146) and Australian (n=413), British (n=163), Danish (n=336), and Finnish (n=399) twins rated intensity and pleasantness of a set of 12 (families) or 6 (twins) odors and tried to identify the odors. In addition, the participants rated their own sense of smell and annoyance experienced with different environmental odors. The odor stimuli of a commercial smell test (The Brief Smell Identification Test; banana, chocolate, cinnamon, gasoline, lemon, onion, paint thinner, pineapple, rose, smoke, soap, and turpentine) were presented in the family study. Based on the results of the family study and a literature survey, a new set of odor stimuli (androstenone, chocolate, cinnamon, isovaleric acid, lemon, and turpentine) was designed for the twin studies. In the family sample, heritabilities of the traits were estimated and underlying genomic regions were searched using a genome-wide linkage scan. In the pooled twin sample, variation in the measured traits was decomposed into genetic and environmental components using quantitative genetic modeling. In addition, associations between nongenetic factors (e.g., sex, age, and smoking) and olfactory-related traits were explored. Suggestive evidence for a genetic linkage for pleasantness of cinnamon at a locus on chromosome 4q32.3 emerged from the family sample. High heritability for the pleasantness of cinnamon was found in the family but not the twin study. Heritability of perceived intensity of androstenone odor was determined to be ~30% in the twin sample. A strong genetic correlation between perceived intensity and pleasantness of androstenone, in the absence of any environmental correlation, indicated that only the genetic correlation explained the phenotypic correlation between the traits (r=-0.27) and that the traits were influenced by an overlapping set of genes. Self-rated olfactory function appeared to reflect the odor annoyance experienced rather than actual olfactory acuity or genetic involvement. Results from nongenetic analyses supported the speculated superiority of females' olfactory abilities, the age-related diminishing of olfactory acuity, and the influences of experience-dependent factors on odor responses. This was the first study to estimate heritabilities and perform linkage screens for individual odors. A genetic effect was detected for only a few responses to specific odors, suggesting the predominance of environmental effects in odor perceptions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of tyrosinase, laccase and transglutaminase (TG) were studied in different meat protein systems. The study was focused on the effects of the enzymes on the gel formation properties of myofibrils, and on the textural and water-holding properties of the heated meat systems. The cross-linking efficiency of a novel Trichoderma reesei tyrosinase was compared to that of the commercial Agaricus bisporus tyrosinase. Trichoderma tyrosinase was found to be superior compared to the Agaricus enzyme in its protein cross-linking efficiency and in the incorporation of a small molecule into a complex proteinaceous substrate. Tyrosinase, laccase and TG all polymerised myofibrillar proteins, but laccase was also found to cause protein fragmentation. A positive connection between covalent cross-link and gel formation was observed with tyrosinase and TG. Laccase was able to increase the gel formation only slightly. With an excessive laccase dosage the gel formation declined due to protein fragmentation. Tyrosinase, laccase and TG had different effects on the texture and water-holding of the heated chicken breast meat homogenates. Tyrosinase improved the firmness of the homogenate gels free of phosphate and with a low amount of meat. TG improved the firmness of all studied homogenates. Laccase weakened the gel firmness of the low-meat, low-salt and low-salt/phosphate homogenates and maintained the firmness on the control level in the homogenate free of phosphate. Tyrosinase was the only enzyme capable of reducing the weight loss in the homogenates containing a low amount of meat and a low amount of NaCl. TG was the only enzyme that could positively affect the firmness of the homogenate gel containing both low NaCl and phosphate amounts. In pilot scale the test products were made of coarsely ground chicken breast fillet with a moderate amount of salt. Increasining the amount of meat, salt and TG contents favoured the development of firmness of the test products. The evaporation loss decreased slightly along with increasing TG and NaCl amounts in the experimental conditions used, indicating a positive interaction between these two factors. In this work it was shown that tyrosinase, laccase and TG affected the same myofibrillar proteins, i.e. myosin and troponin T. However, these enzymes had distinguishable effects on the gel formation of a myofibril system as well as on the textural and water-holding properties of the finely ground meat homogenates, reflecting distinctions at least in the reaction mechanisms and target amino acid availability in the protein substrates for these enzymes.