3 resultados para Elemental analysis (EA)

em Helda - Digital Repository of University of Helsinki


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The thesis addresses the problem of Finnish Iron Age bells, pellet bells and bell pendants, previously unexplored musical artefacts from 400–1300 AD. The study, which contributes to the field of music archaeology, aims to provide a gateway to ancient soundworlds and ideas of music making. The research questions include: Where did these metal artefacts come from? How did they sound? How were they used? What did their sound mean to the people of the Iron Age? The data collected at the National Museum of Finland and at several provincial museums covers a total of 486 bells, pellet bells and bell pendants. By means of a cluster analysis, each category was divided into several subgroups. The subgroups, which all seem to have a different dating and geographical distribution, represent a spread of both local and international manufacturing traditions. According to an elemental analysis, the material varies from iron to copper-tin, copper-lead and copper-tin-lead alloys. Clappers, pellets and pebbles prove that the bells and pellet bells were indisputably instruments intended for sound production. Clusters of small bell pendants, however, probably produced sound by jingling against each other. Spectrogram plots reveal that the partials of the still audible sounds range from 1 000 to 19 850 Hz. On the basis of 129 inhumation graves, hoards, barrows and stray finds, it seems evident that the bells, pellet bells and bell pendants were fastened to dresses and horse harnesses or carried in pouches and boxes. The resulting acoustic spaces could have been employed in constructing social hierarchies, since the instruments usually appear in richly furnished graves. Furthermore, the instruments repeatedly occur with crosses, edge tools and zoomorphic pendants that in the later Finnish-Karelian culture were regarded as prophylactic amulets. In the Iron Age as well as in later folk culture, the bell sounds seem to have expressed territorial, social and cosmological boundaries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drug Analysis without Primary Reference Standards: Application of LC-TOFMS and LC-CLND to Biofluids and Seized Material Primary reference standards for new drugs, metabolites, designer drugs or rare substances may not be obtainable within a reasonable period of time or their availability may also be hindered by extensive administrative requirements. Standards are usually costly and may have a limited shelf life. Finally, many compounds are not available commercially and sometimes not at all. A new approach within forensic and clinical drug analysis involves substance identification based on accurate mass measurement by liquid chromatography coupled with time-of-flight mass spectrometry (LC-TOFMS) and quantification by LC coupled with chemiluminescence nitrogen detection (LC-CLND) possessing equimolar response to nitrogen. Formula-based identification relies on the fact that the accurate mass of an ion from a chemical compound corresponds to the elemental composition of that compound. Single-calibrant nitrogen based quantification is feasible with a nitrogen-specific detector since approximately 90% of drugs contain nitrogen. A method was developed for toxicological drug screening in 1 ml urine samples by LC-TOFMS. A large target database of exact monoisotopic masses was constructed, representing the elemental formulae of reference drugs and their metabolites. Identification was based on matching the sample component s measured parameters with those in the database, including accurate mass and retention time, if available. In addition, an algorithm for isotopic pattern match (SigmaFit) was applied. Differences in ion abundance in urine extracts did not affect the mass accuracy or the SigmaFit values. For routine screening practice, a mass tolerance of 10 ppm and a SigmaFit tolerance of 0.03 were established. Seized street drug samples were analysed instantly by LC-TOFMS and LC-CLND, using a dilute and shoot approach. In the quantitative analysis of amphetamine, heroin and cocaine findings, the mean relative difference between the results of LC-CLND and the reference methods was only 11%. In blood specimens, liquid-liquid extraction recoveries for basic lipophilic drugs were first established and the validity of the generic extraction recovery-corrected single-calibrant LC-CLND was then verified with proficiency test samples. The mean accuracy was 24% and 17% for plasma and whole blood samples, respectively, all results falling within the confidence range of the reference concentrations. Further, metabolic ratios for the opioid drug tramadol were determined in a pharmacogenetic study setting. Extraction recovery estimation, based on model compounds with similar physicochemical characteristics, produced clinically feasible results without reference standards.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The analysis of lipid compositions from biological samples has become increasingly important. Lipids have a role in cardiovascular disease, metabolic syndrome and diabetes. They also participate in cellular processes such as signalling, inflammatory response, aging and apoptosis. Also, the mechanisms of regulation of cell membrane lipid compositions are poorly understood, partially because a lack of good analytical methods. Mass spectrometry has opened up new possibilities for lipid analysis due to its high resolving power, sensitivity and the possibility to do structural identification by fragment analysis. The introduction of Electrospray ionization (ESI) and the advances in instrumentation revolutionized the analysis of lipid compositions. ESI is a soft ionization method, i.e. it avoids unwanted fragmentation the lipids. Mass spectrometric analysis of lipid compositions is complicated by incomplete separation of the signals, the differences in the instrument response of different lipids and the large amount of data generated by the measurements. These factors necessitate the use of computer software for the analysis of the data. The topic of the thesis is the development of methods for mass spectrometric analysis of lipids. The work includes both computational and experimental aspects of lipid analysis. The first article explores the practical aspects of quantitative mass spectrometric analysis of complex lipid samples and describes how the properties of phospholipids and their concentration affect the response of the mass spectrometer. The second article describes a new algorithm for computing the theoretical mass spectrometric peak distribution, given the elemental isotope composition and the molecular formula of a compound. The third article introduces programs aimed specifically for the analysis of complex lipid samples and discusses different computational methods for separating the overlapping mass spectrometric peaks of closely related lipids. The fourth article applies the methods developed by simultaneously measuring the progress curve of enzymatic hydrolysis for a large number of phospholipids, which are used to determine the substrate specificity of various A-type phospholipases. The data provides evidence that the substrate efflux from bilayer is the key determining factor for the rate of hydrolysis.